* added broadcast to the player and heuristic brain.
Allows the python API to record actions taken along with the states and rewards
* removed the broadcast checkbox
Added a Handshake method for the communicator
The academy will try to handshake regardless of the brains present
Player and Heuristic brains will send their information through the communicator but will not receive commands
* bug fix : The environment only requests actions from external brains when unique
* added warning in case no brins are set to external
* fix on the instanciation of coreBrains,
fix on the conversion of actions to arrays in the BrainInfo received from step
* default discrete action is now 0
bug fix for discrete broadcast action (the action size should be one in Agents.cs)
modified Tennis so that the default action is no action
modified the TemplateDecsion.cs to ensure non null values are sent from Decide() and MakeMemory()
* minor fixes
* need to convert the s...
* Add support for stacking past n states to allow network to learn temporal dependencies.
* Add Banana Collector environment for demonstrating partially observable multi-agent environments.
* Add 3DBall Hard which lacks velocity information in state representation. Used as test for LSTM and state-stacking features.
* Rework Tennis environment to be continuous control and trainable in 100k steps.
RayPerception moved to a component that is now used by Banana, Soccer, Hallway, and Push Block.
Converted Push Block to use RayPerception for local perception and retrained model.
Re-worked Hallway to be more extensible.
* Fixes internal brain for Banana Imitation.
* Fixes Discrete Control training for Imitation Learning.
* Fixes Visual Observations in internal brain with non-square inputs.
* Adds implementation of Curiosity-driven Exploration by Self-supervised Prediction (https://arxiv.org/abs/1705.05363) to PPO trainer.
* To enable, set use_curiosity flag to true in hyperparameter file.
* Includes refactor of unitytrainers model code to accommodate new feature.
* Adds new Pyramids environment (w/ documentation). Environment contains sparse reward, and can only be solved using PPO+Curiosity.
* Revamps agent code for walker and crawler environments to use shared JointDriveController system.
* Crawler has been reworked to be very cute.
* Crawler & Walker environments have been reworked to be visually consistent.
* Added Dynamic Crawler scene.
* All scenes re-trained and new models added.
* Documentation changes.
* Make project version 2017.4
* updated the documentation
* added the upgrade notes for 2017.1 to 2017.4
* removed the .10f1
* fix the typo and make the language nicer
* resolved the comments
* Wrapping lines.
* Wording.
* resolved part of jeff's comment
* resolved part of jeff's comment
* fixed the link
* Update FAQ.md
Missing "an".
* Missing "an".
* Switched default Mac GFX API to Metal
* Added Barracuda pre-0.1.5
* Added basic integration with Barracuda Inference Engine
* Use predefined outputs the same way as for TF engine
* Fixed discrete action + LSTM support
* Switch Unity Mac Editor to Metal GFX API
* Fixed null model handling
* All examples converted to support Barracuda
* Added model conversion from Tensorflow to Barracuda
copied the barracuda.py file to ml-agents/mlagents/trainers
copied the tensorflow_to_barracuda.py file to ml-agents/mlagents/trainers
modified the tensorflow_to_barracuda.py file so it could be called from mlagents
modified ml-agents/mlagents/trainers/policy.py to convert the tf models to barracuda compatible .bytes file
* Added missing iOS BLAS plugin
* Added forgotten prefab changes
* Removed GLCore GFX backend for Mac, because it doesn't support Compute shaders
* Exposed GPU support for LearningBrain inference
...
* new env styles rebased on develop
* added new trained models
* renamed food collector platforms
* reduce training timescale on WallJump from 100 to 10
* uncheck academy control on walljump
* new banner image
* rename banner file
* new example env images
* add foodCollector image
* change Banana to FoodCollector and update image
* change bouncer description to include green cube
* update image
* update gridworld image
* cleanup prefab names and tags
* updated soccer env to reference purple agent instead of red
* remove unused mats
* rename files
* remove more unused tags
* update image
* change platform to agent cube
* update text. change platform to agents head
* cleanup
* cleaned up weird unused meta files
* add new wall jump nn files and rename a prefab
* walker change stacked states from 5 to 1
walker collects physics observations so stacked states are not need...