* added broadcast to the player and heuristic brain.
Allows the python API to record actions taken along with the states and rewards
* removed the broadcast checkbox
Added a Handshake method for the communicator
The academy will try to handshake regardless of the brains present
Player and Heuristic brains will send their information through the communicator but will not receive commands
* bug fix : The environment only requests actions from external brains when unique
* added warning in case no brins are set to external
* fix on the instanciation of coreBrains,
fix on the conversion of actions to arrays in the BrainInfo received from step
* default discrete action is now 0
bug fix for discrete broadcast action (the action size should be one in Agents.cs)
modified Tennis so that the default action is no action
modified the TemplateDecsion.cs to ensure non null values are sent from Decide() and MakeMemory()
* minor fixes
* need to convert the s...
* Add support for stacking past n states to allow network to learn temporal dependencies.
* Add Banana Collector environment for demonstrating partially observable multi-agent environments.
* Add 3DBall Hard which lacks velocity information in state representation. Used as test for LSTM and state-stacking features.
* Rework Tennis environment to be continuous control and trainable in 100k steps.
This PR makes the following changes:
* Moves clipping of continuous control model into model itself. Output is now always [-1, 1].
* Internal model values are now clipped between [-3, 3] before being rescaled to [-1, 1] for output. * This improves training performance by providing a wider range of values within which the pdf of the gaussian can fall. Output of [-1, 1] is used to be more environment-creator friendly.
* Fixes issue where epsilon was erroneously being used to reconstruct old probabilities during PPO update, leading to reduced learning performance.
* Introduce ScaleAction() function within python to easily rescale values from [-1, 1] to arbitrary range.
* Re-train all CC models using improved algorithm. All performance levels are equal or improved. In the case of Crawler, improvement is drastic.
* Update documentation appropriately.
* Made miscellaneous minor code style and optimization improvements within environments.