* On Demand Decision : Use RequestDecision and RequestAction
* New Agent Inspector : Use it to set On Demand Decision
* New BrainParameters interface
* LSTM memory size is now set in python
* New C# API
* Semantic Changes
* Replaced RunMDP
* New Bouncer Environment to test On Demand Dscision
* Fix Basic environment to properly reflect number of states.
* Fix discrete states when using stacked states.
* Add trained model for Basic environment.
* Reorganized python tests into separate folder, and make individiual test files for different (sub) modules.
* Add tests for trainer_controller, PPO, and behavioral cloning. More to come soon.
* Minor bug fixes discovered while writing tests.
* Reworked GirdWorld to reset much faster.
* Cleaned ObservationToTex and reworked GetObservationMatrixList to be 3x faster.
* Implement behavioral cloning for cc/dc, fc/rnn, state/observations.
* Re-organize folder structure in anticipation of unitytrainers as a package.
* Create demo environment BananaImitation to validate behavioral cloning.
* Fixes#336
* Add ability to seed learning (numpy, tensorflow, and Unity) with `--seed` flag.
* Add `maxStepReached` flag to Agents and Academy.
* Change way value bootstrapping works in PPO to take advantage of timeouts.
* Default size of GridWorld changed to 5x5 in order to validate bootstrapping changes.
* Add support for stacking past n states to allow network to learn temporal dependencies.
* Add Banana Collector environment for demonstrating partially observable multi-agent environments.
* Add 3DBall Hard which lacks velocity information in state representation. Used as test for LSTM and state-stacking features.
* Rework Tennis environment to be continuous control and trainable in 100k steps.
* `learn.py` is now main script for training brains.
* Simultaneous multi-brain training is now possible.
* `ghost-trainer` allows for proper training in adversarial scenarios.
* `imitation-trainer` provides a basic implementation of real-time behavioral cloning.
* All trainer hyperparameters now exist in `.yaml` files.
* `PPO.ipynb` removed.
* LSTM model added.
* More dynamic buffer class to handle greater variety of scenarios.