浏览代码

Rename variables in imitation trainer

/develop-generalizationTraining-TrainerController
Arthur Juliani 7 年前
当前提交
4418421a
共有 2 个文件被更改,包括 32 次插入36 次删除
  1. 66
      python/trainers/imitation_trainer.py
  2. 2
      python/trainers/trainer.py

66
python/trainers/imitation_trainer.py


:return: a tupple containing action, memories, values and an object
to be passed to add experiences
"""
E = info[self.brain_name]
agent_action = self.sess.run(self.network.sample_action, feed_dict={self.network.state: E.states})
agent_brain = info[self.brain_name]
agent_action = self.sess.run(self.network.sample_action, feed_dict={self.network.state: agent_brain.states})
return agent_action, None, None, None
def add_experiences(self, info, next_info, take_action_outputs):

:param next_info: Next BrainInfo.
:param take_action_outputs: The outputs of the take action method.
"""
info_P = info[self.brain_to_imitate]
next_info_P = next_info[self.brain_to_imitate]
for agent_id in info_P.agents:
if agent_id in next_info_P.agents:
idx = info_P.agents.index(agent_id)
next_idx = next_info_P.agents.index(agent_id)
if not info_P.local_done[idx]:
self.training_buffer[agent_id]['states'].append(info_P.states[idx])
self.training_buffer[agent_id]['actions'].append(next_info_P.previous_actions[next_idx])
# self.training_buffer[agent_id]['rewards'].append(next_info.rewards[next_idx])
info_expert = info[self.brain_to_imitate]
next_info_expert = next_info[self.brain_to_imitate]
for agent_id in info_expert.agents:
if agent_id in next_info_expert.agents:
idx = info_expert.agents.index(agent_id)
next_idx = next_info_expert.agents.index(agent_id)
if not info_expert.local_done[idx]:
self.training_buffer[agent_id]['states'].append(info_expert.states[idx])
self.training_buffer[agent_id]['actions'].append(next_info_expert.previous_actions[next_idx])
info_E = next_info[self.brain_name]
next_info_E = next_info[self.brain_name]
for agent_id in info_E.agents:
idx = info_E.agents.index(agent_id)
next_idx = next_info_E.agents.index(agent_id)
if not info_E.local_done[idx]:
info_student = next_info[self.brain_name]
next_info_student = next_info[self.brain_name]
for agent_id in info_student.agents:
idx = info_student.agents.index(agent_id)
next_idx = next_info_student.agents.index(agent_id)
if not info_student.local_done[idx]:
self.cumulative_rewards[agent_id] += next_info_E.rewards[next_idx]
self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx]
if agent_id not in self.episode_steps:
self.episode_steps[agent_id] = 0
self.episode_steps[agent_id] += 1

:param info: Current BrainInfo
"""
info_P = info[self.brain_to_imitate]
for l in range(len(info_P.agents)):
if ((info_P.local_done[l] or
len(self.training_buffer[info_P.agents[l]]['actions']) > self.trainer_parameters['time_horizon'])
and len(self.training_buffer[info_P.agents[l]]['actions']) > 0):
agent_id = info_P.agents[l]
info_expert = info[self.brain_to_imitate]
for l in range(len(info_expert.agents)):
if ((info_expert.local_done[l] or
len(self.training_buffer[info_expert.agents[l]]['actions']) > self.trainer_parameters['time_horizon'])
and len(self.training_buffer[info_expert.agents[l]]['actions']) > 0):
agent_id = info_expert.agents[l]
info_E = info[self.brain_name]
for l in range(len(info_E.agents)):
if info_E.local_done[l]:
agent_id = info_E.agents[l]
info_student = info[self.brain_name]
for l in range(len(info_student.agents)):
if info_student.local_done[l]:
agent_id = info_student.agents[l]
self.stats['cumulative_reward'].append(self.cumulative_rewards[agent_id])
self.stats['episode_length'].append(self.episode_steps[agent_id])
self.cumulative_rewards[agent_id] = 0

def is_ready_update(self):
"""
Returns wether or not the trainer has enough elements to run update model
Returns whether or not the trainer has enough elements to run update model
:return: A boolean corresponding to wether or not update_model() can be run
"""
return len(self.training_buffer.update_buffer['actions']) > self.batch_size

if not self.is_continuous:
feed_dict = {
self.network.state: batch_states.reshape([-1, 1]),
self.network.true_action: np.reshape(batch_actions, -1)
}
self.network.true_action: np.reshape(batch_actions, -1)}
self.network.true_action: batch_actions.reshape([self.batch_size, -1])
}
self.network.true_action: batch_actions.reshape([self.batch_size, -1])}
loss, _ = self.sess.run([self.network.loss, self.network.update], feed_dict=feed_dict)
batch_losses.append(loss)
if len(batch_losses) > 0:

2
python/trainers/trainer.py


def is_ready_update(self):
"""
Returns wether or not the trainer has enough elements to run update model
Returns whether or not the trainer has enough elements to run update model
:return: A boolean corresponding to wether or not update_model() can be run
"""
raise UnityTrainerException("The is_ready_update method was not implemented.")

正在加载...
取消
保存