您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
517 行
24 KiB
517 行
24 KiB
using System;
|
|
|
|
namespace UnityEngine.Experimental.Rendering.HDPipeline
|
|
{
|
|
[GenerateHLSL]
|
|
public class DiffusionProfileConstants
|
|
{
|
|
public const int DIFFUSION_PROFILE_COUNT = 16; // Max. number of profiles, including the slot taken by the neutral profile
|
|
public const int DIFFUSION_PROFILE_NEUTRAL_ID = 0; // Does not result in blurring
|
|
public const int SSS_N_SAMPLES_NEAR_FIELD = 55; // Used for extreme close ups; must be a Fibonacci number
|
|
public const int SSS_N_SAMPLES_FAR_FIELD = 21; // Used at a regular distance; must be a Fibonacci number
|
|
public const int SSS_LOD_THRESHOLD = 4; // The LoD threshold of the near-field kernel (in pixels)
|
|
// Old SSS Model >>>
|
|
public const int SSS_BASIC_N_SAMPLES = 11; // Must be an odd number
|
|
public const int SSS_BASIC_DISTANCE_SCALE = 3; // SSS distance units per centimeter
|
|
// <<< Old SSS Model
|
|
}
|
|
|
|
[Serializable]
|
|
public sealed class DiffusionProfile
|
|
{
|
|
public enum TexturingMode : uint
|
|
{
|
|
PreAndPostScatter = 0,
|
|
PostScatter = 1
|
|
}
|
|
|
|
public enum TransmissionMode : uint
|
|
{
|
|
Regular = 0,
|
|
ThinObject = 1
|
|
}
|
|
|
|
public string name;
|
|
|
|
[ColorUsage(false, true)]
|
|
public Color scatteringDistance; // Per color channel (no meaningful units)
|
|
[ColorUsage(false, true)]
|
|
public Color transmissionTint; // HDR color
|
|
public TexturingMode texturingMode;
|
|
public TransmissionMode transmissionMode;
|
|
public Vector2 thicknessRemap; // X = min, Y = max (in millimeters)
|
|
public float worldScale; // Size of the world unit in meters
|
|
public float ior; // 1.4 for skin (mean ~0.028)
|
|
|
|
// Old SSS Model >>>
|
|
[ColorUsage(false, true)]
|
|
public Color scatterDistance1;
|
|
[ColorUsage(false, true)]
|
|
public Color scatterDistance2;
|
|
[Range(0f, 1f)]
|
|
public float lerpWeight;
|
|
// <<< Old SSS Model
|
|
|
|
public Vector3 shapeParam { get; private set; } // RGB = shape parameter: S = 1 / D
|
|
public float maxRadius { get; private set; } // In millimeters
|
|
public Vector2[] filterKernelNearField { get; private set; } // X = radius, Y = reciprocal of the PDF
|
|
public Vector2[] filterKernelFarField { get; private set; } // X = radius, Y = reciprocal of the PDF
|
|
public Vector4 halfRcpWeightedVariances { get; private set; }
|
|
public Vector4[] filterKernelBasic { get; private set; }
|
|
|
|
public DiffusionProfile(string name)
|
|
{
|
|
this.name = name;
|
|
|
|
scatteringDistance = Color.grey;
|
|
transmissionTint = Color.white;
|
|
texturingMode = TexturingMode.PreAndPostScatter;
|
|
transmissionMode = TransmissionMode.ThinObject;
|
|
thicknessRemap = new Vector2(0f, 5f);
|
|
worldScale = 1f;
|
|
ior = 1.4f; // TYpical value for skin specular reflectance
|
|
|
|
// Old SSS Model >>>
|
|
scatterDistance1 = new Color(0.3f, 0.3f, 0.3f, 0f);
|
|
scatterDistance2 = new Color(0.5f, 0.5f, 0.5f, 0f);
|
|
lerpWeight = 1f;
|
|
// <<< Old SSS Model
|
|
}
|
|
|
|
public void Validate()
|
|
{
|
|
thicknessRemap.y = Mathf.Max(thicknessRemap.y, 0f);
|
|
thicknessRemap.x = Mathf.Clamp(thicknessRemap.x, 0f, thicknessRemap.y);
|
|
worldScale = Mathf.Max(worldScale, 0.001f);
|
|
ior = Mathf.Clamp(ior, 1.0f, 2.0f);
|
|
|
|
// Old SSS Model >>>
|
|
scatterDistance1 = new Color
|
|
{
|
|
r = Mathf.Max(0.05f, scatterDistance1.r),
|
|
g = Mathf.Max(0.05f, scatterDistance1.g),
|
|
b = Mathf.Max(0.05f, scatterDistance1.b),
|
|
a = 0.0f
|
|
};
|
|
|
|
scatterDistance2 = new Color
|
|
{
|
|
r = Mathf.Max(0.05f, scatterDistance2.r),
|
|
g = Mathf.Max(0.05f, scatterDistance2.g),
|
|
b = Mathf.Max(0.05f, scatterDistance2.b),
|
|
a = 0f
|
|
};
|
|
// <<< Old SSS Model
|
|
|
|
UpdateKernel();
|
|
}
|
|
|
|
// Ref: Approximate Reflectance Profiles for Efficient Subsurface Scattering by Pixar.
|
|
public void UpdateKernel()
|
|
{
|
|
if (filterKernelNearField == null || filterKernelNearField.Length != DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD)
|
|
filterKernelNearField = new Vector2[DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD];
|
|
|
|
if (filterKernelFarField == null || filterKernelFarField.Length != DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD)
|
|
filterKernelFarField = new Vector2[DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD];
|
|
|
|
// Clamp to avoid artifacts.
|
|
shapeParam = new Vector3(
|
|
1f / Mathf.Max(0.001f, scatteringDistance.r),
|
|
1f / Mathf.Max(0.001f, scatteringDistance.g),
|
|
1f / Mathf.Max(0.001f, scatteringDistance.b)
|
|
);
|
|
|
|
// We importance sample the color channel with the widest scattering distance.
|
|
float s = Mathf.Min(shapeParam.x, shapeParam.y, shapeParam.z);
|
|
|
|
// Importance sample the normalized diffuse reflectance profile for the computed value of 's'.
|
|
// ------------------------------------------------------------------------------------
|
|
// R[r, phi, s] = s * (Exp[-r * s] + Exp[-r * s / 3]) / (8 * Pi * r)
|
|
// PDF[r, phi, s] = r * R[r, phi, s]
|
|
// CDF[r, s] = 1 - 1/4 * Exp[-r * s] - 3/4 * Exp[-r * s / 3]
|
|
// ------------------------------------------------------------------------------------
|
|
|
|
// Importance sample the near field kernel.
|
|
for (int i = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD; i < n; i++)
|
|
{
|
|
float p = (i + 0.5f) * (1.0f / n);
|
|
float r = DisneyProfileCdfInverse(p, s);
|
|
|
|
// N.b.: computation of normalized weights, and multiplication by the surface albedo
|
|
// of the actual geometry is performed at runtime (in the shader).
|
|
filterKernelNearField[i].x = r;
|
|
filterKernelNearField[i].y = 1f / DisneyProfilePdf(r, s);
|
|
}
|
|
|
|
// Importance sample the far field kernel.
|
|
for (int i = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD; i < n; i++)
|
|
{
|
|
float p = (i + 0.5f) * (1.0f / n);
|
|
float r = DisneyProfileCdfInverse(p, s);
|
|
|
|
// N.b.: computation of normalized weights, and multiplication by the surface albedo
|
|
// of the actual geometry is performed at runtime (in the shader).
|
|
filterKernelFarField[i].x = r;
|
|
filterKernelFarField[i].y = 1f / DisneyProfilePdf(r, s);
|
|
}
|
|
|
|
maxRadius = filterKernelFarField[DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD - 1].x;
|
|
|
|
// Old SSS Model >>>
|
|
UpdateKernelAndVarianceData();
|
|
// <<< Old SSS Model
|
|
}
|
|
|
|
// Old SSS Model >>>
|
|
public void UpdateKernelAndVarianceData()
|
|
{
|
|
const int kNumSamples = DiffusionProfileConstants.SSS_BASIC_N_SAMPLES;
|
|
const int kDistanceScale = DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE;
|
|
|
|
if (filterKernelBasic == null || filterKernelBasic.Length != kNumSamples)
|
|
filterKernelBasic = new Vector4[kNumSamples];
|
|
|
|
// Apply the three-sigma rule, and rescale.
|
|
var stdDev1 = ((1f / 3f) * kDistanceScale) * scatterDistance1;
|
|
var stdDev2 = ((1f / 3f) * kDistanceScale) * scatterDistance2;
|
|
|
|
// Our goal is to blur the image using a filter which is represented
|
|
// as a product of a linear combination of two normalized 1D Gaussians
|
|
// as suggested by Jimenez et al. in "Separable Subsurface Scattering".
|
|
// A normalized (i.e. energy-preserving) 1D Gaussian with the mean of 0
|
|
// is defined as follows: G1(x, v) = exp(-x * x / (2 * v)) / sqrt(2 * Pi * v),
|
|
// where 'v' is variance and 'x' is the radial distance from the origin.
|
|
// Using the weight 'w', our 1D and the resulting 2D filters are given as:
|
|
// A1(v1, v2, w, x) = G1(x, v1) * (1 - w) + G1(r, v2) * w,
|
|
// A2(v1, v2, w, x, y) = A1(v1, v2, w, x) * A1(v1, v2, w, y).
|
|
// The resulting filter function is a non-Gaussian PDF.
|
|
// It is separable by design, but generally not radially symmetric.
|
|
|
|
// N.b.: our scattering distance is rather limited. Therefore, in order to allow
|
|
// for a greater range of standard deviation values for flatter profiles,
|
|
// we rescale the world using 'distanceScale', effectively reducing the SSS
|
|
// distance units from centimeters to (1 / distanceScale).
|
|
|
|
// Find the widest Gaussian across 3 color channels.
|
|
float maxStdDev1 = Mathf.Max(stdDev1.r, stdDev1.g, stdDev1.b);
|
|
float maxStdDev2 = Mathf.Max(stdDev2.r, stdDev2.g, stdDev2.b);
|
|
|
|
var weightSum = Vector3.zero;
|
|
|
|
float step = 1f / (kNumSamples - 1);
|
|
|
|
// Importance sample the linear combination of two Gaussians.
|
|
for (int i = 0; i < kNumSamples; i++)
|
|
{
|
|
// Generate 'u' on (0, 0.5] and (0.5, 1).
|
|
float u = (i <= kNumSamples / 2) ? 0.5f - i * step // The center and to the left
|
|
: i * step; // From the center to the right
|
|
|
|
u = Mathf.Clamp(u, 0.001f, 0.999f);
|
|
|
|
float pos = GaussianCombinationCdfInverse(u, maxStdDev1, maxStdDev2, lerpWeight);
|
|
float pdf = GaussianCombination(pos, maxStdDev1, maxStdDev2, lerpWeight);
|
|
|
|
Vector3 val;
|
|
val.x = GaussianCombination(pos, stdDev1.r, stdDev2.r, lerpWeight);
|
|
val.y = GaussianCombination(pos, stdDev1.g, stdDev2.g, lerpWeight);
|
|
val.z = GaussianCombination(pos, stdDev1.b, stdDev2.b, lerpWeight);
|
|
|
|
// We do not divide by 'numSamples' since we will renormalize, anyway.
|
|
filterKernelBasic[i].x = val.x * (1 / pdf);
|
|
filterKernelBasic[i].y = val.y * (1 / pdf);
|
|
filterKernelBasic[i].z = val.z * (1 / pdf);
|
|
filterKernelBasic[i].w = pos;
|
|
|
|
weightSum.x += filterKernelBasic[i].x;
|
|
weightSum.y += filterKernelBasic[i].y;
|
|
weightSum.z += filterKernelBasic[i].z;
|
|
}
|
|
|
|
// Renormalize the weights to conserve energy.
|
|
for (int i = 0; i < kNumSamples; i++)
|
|
{
|
|
filterKernelBasic[i].x *= 1 / weightSum.x;
|
|
filterKernelBasic[i].y *= 1 / weightSum.y;
|
|
filterKernelBasic[i].z *= 1 / weightSum.z;
|
|
}
|
|
|
|
Vector4 weightedStdDev;
|
|
weightedStdDev.x = Mathf.Lerp(stdDev1.r, stdDev2.r, lerpWeight);
|
|
weightedStdDev.y = Mathf.Lerp(stdDev1.g, stdDev2.g, lerpWeight);
|
|
weightedStdDev.z = Mathf.Lerp(stdDev1.b, stdDev2.b, lerpWeight);
|
|
weightedStdDev.w = Mathf.Lerp(maxStdDev1, maxStdDev2, lerpWeight);
|
|
|
|
// Store (1 / (2 * WeightedVariance)) per color channel.
|
|
// Warning: do not use halfRcpWeightedVariances.Set(). It will not work.
|
|
halfRcpWeightedVariances = new Vector4(0.5f / (weightedStdDev.x * weightedStdDev.x),
|
|
0.5f / (weightedStdDev.y * weightedStdDev.y),
|
|
0.5f / (weightedStdDev.z * weightedStdDev.z),
|
|
0.5f / (weightedStdDev.w * weightedStdDev.w));
|
|
}
|
|
// <<< Old SSS Model
|
|
|
|
static float DisneyProfile(float r, float s)
|
|
{
|
|
return s * (Mathf.Exp(-r * s) + Mathf.Exp(-r * s * (1.0f / 3.0f))) / (8.0f * Mathf.PI * r);
|
|
}
|
|
|
|
static float DisneyProfilePdf(float r, float s)
|
|
{
|
|
return r * DisneyProfile(r, s);
|
|
}
|
|
|
|
static float DisneyProfileCdf(float r, float s)
|
|
{
|
|
return 1.0f - 0.25f * Mathf.Exp(-r * s) - 0.75f * Mathf.Exp(-r * s * (1.0f / 3.0f));
|
|
}
|
|
|
|
static float DisneyProfileCdfDerivative1(float r, float s)
|
|
{
|
|
return 0.25f * s * Mathf.Exp(-r * s) * (1.0f + Mathf.Exp(r * s * (2.0f / 3.0f)));
|
|
}
|
|
|
|
static float DisneyProfileCdfDerivative2(float r, float s)
|
|
{
|
|
return (-1.0f / 12.0f) * s * s * Mathf.Exp(-r * s) * (3.0f + Mathf.Exp(r * s * (2.0f / 3.0f)));
|
|
}
|
|
|
|
// The CDF is not analytically invertible, so we use Halley's Method of root finding.
|
|
// { f(r, s, p) = CDF(r, s) - p = 0 } with the initial guess { r = (10^p - 1) / s }.
|
|
static float DisneyProfileCdfInverse(float p, float s)
|
|
{
|
|
// Supply the initial guess.
|
|
float r = (Mathf.Pow(10f, p) - 1f) / s;
|
|
float t = float.MaxValue;
|
|
|
|
while (true)
|
|
{
|
|
float f0 = DisneyProfileCdf(r, s) - p;
|
|
float f1 = DisneyProfileCdfDerivative1(r, s);
|
|
float f2 = DisneyProfileCdfDerivative2(r, s);
|
|
float dr = f0 / (f1 * (1f - f0 * f2 / (2f * f1 * f1)));
|
|
|
|
if (Mathf.Abs(dr) < t)
|
|
{
|
|
r = r - dr;
|
|
t = Mathf.Abs(dr);
|
|
}
|
|
else
|
|
{
|
|
// Converged to the best result.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
// Old SSS Model >>>
|
|
static float Gaussian(float x, float stdDev)
|
|
{
|
|
float variance = stdDev * stdDev;
|
|
return Mathf.Exp(-x * x / (2 * variance)) / Mathf.Sqrt(2 * Mathf.PI * variance);
|
|
}
|
|
|
|
static float GaussianCombination(float x, float stdDev1, float stdDev2, float lerpWeight)
|
|
{
|
|
return Mathf.Lerp(Gaussian(x, stdDev1), Gaussian(x, stdDev2), lerpWeight);
|
|
}
|
|
|
|
static float RationalApproximation(float t)
|
|
{
|
|
// Abramowitz and Stegun formula 26.2.23.
|
|
// The absolute value of the error should be less than 4.5 e-4.
|
|
float[] c = { 2.515517f, 0.802853f, 0.010328f };
|
|
float[] d = { 1.432788f, 0.189269f, 0.001308f };
|
|
return t - ((c[2] * t + c[1]) * t + c[0]) / (((d[2] * t + d[1]) * t + d[0]) * t + 1.0f);
|
|
}
|
|
|
|
// Ref: https://www.johndcook.com/blog/csharp_phi_inverse/
|
|
static float NormalCdfInverse(float p, float stdDev)
|
|
{
|
|
float x;
|
|
|
|
if (p < 0.5)
|
|
{
|
|
// F^-1(p) = - G^-1(p)
|
|
x = -RationalApproximation(Mathf.Sqrt(-2f * Mathf.Log(p)));
|
|
}
|
|
else
|
|
{
|
|
// F^-1(p) = G^-1(1-p)
|
|
x = RationalApproximation(Mathf.Sqrt(-2f * Mathf.Log(1f - p)));
|
|
}
|
|
|
|
return x * stdDev;
|
|
}
|
|
|
|
static float GaussianCombinationCdfInverse(float p, float stdDev1, float stdDev2, float lerpWeight)
|
|
{
|
|
return Mathf.Lerp(NormalCdfInverse(p, stdDev1), NormalCdfInverse(p, stdDev2), lerpWeight);
|
|
}
|
|
// <<< Old SSS Model
|
|
}
|
|
|
|
public sealed class DiffusionProfileSettings : ScriptableObject
|
|
{
|
|
public DiffusionProfile[] profiles;
|
|
|
|
[NonSerialized] public uint texturingModeFlags; // 1 bit/profile: 0 = PreAndPostScatter, 1 = PostScatter
|
|
[NonSerialized] public uint transmissionFlags; // 1 bit/profile: 0 = regular, 1 = thin
|
|
[NonSerialized] public Vector4[] thicknessRemaps; // Remap: 0 = start, 1 = end - start
|
|
[NonSerialized] public Vector4[] worldScales; // X = meters per world unit; Y = world units per meter
|
|
[NonSerialized] public Vector4[] shapeParams; // RGB = S = 1 / D, A = filter radius
|
|
[NonSerialized] public Vector4[] transmissionTintsAndFresnel0; // RGB = color, A = fresnel0
|
|
[NonSerialized] public Vector4[] disabledTransmissionTintsAndFresnel0; // RGB = black, A = fresnel0 - For debug to remove the transmission
|
|
[NonSerialized] public Vector4[] filterKernels; // XY = near field, ZW = far field; 0 = radius, 1 = reciprocal of the PDF
|
|
|
|
// Old SSS Model >>>
|
|
[NonSerialized] public Vector4[] halfRcpWeightedVariances;
|
|
[NonSerialized] public Vector4[] halfRcpVariancesAndWeights;
|
|
[NonSerialized] public Vector4[] filterKernelsBasic;
|
|
// <<< Old SSS Model
|
|
|
|
public DiffusionProfile this[int index]
|
|
{
|
|
get
|
|
{
|
|
if (index >= DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT - 1)
|
|
throw new IndexOutOfRangeException("index");
|
|
|
|
return profiles[index];
|
|
}
|
|
}
|
|
|
|
void OnEnable()
|
|
{
|
|
// The neutral profile is not a part of the array.
|
|
int profileArraySize = DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT - 1;
|
|
|
|
if (profiles != null && profiles.Length != profileArraySize)
|
|
Array.Resize(ref profiles, profileArraySize);
|
|
|
|
if (profiles == null)
|
|
profiles = new DiffusionProfile[profileArraySize];
|
|
|
|
for (int i = 0; i < profileArraySize; i++)
|
|
{
|
|
if (profiles[i] == null)
|
|
profiles[i] = new DiffusionProfile("Profile " + (i + 1));
|
|
|
|
profiles[i].Validate();
|
|
}
|
|
|
|
ValidateArray(ref thicknessRemaps, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
|
|
ValidateArray(ref worldScales, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
|
|
ValidateArray(ref shapeParams, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
|
|
ValidateArray(ref transmissionTintsAndFresnel0, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
|
|
ValidateArray(ref disabledTransmissionTintsAndFresnel0, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
|
|
ValidateArray(ref filterKernels, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT * DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD);
|
|
|
|
// Old SSS Model >>>
|
|
ValidateArray(ref halfRcpWeightedVariances, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
|
|
ValidateArray(ref halfRcpVariancesAndWeights, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT * 2);
|
|
ValidateArray(ref filterKernelsBasic, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT * DiffusionProfileConstants.SSS_BASIC_N_SAMPLES);
|
|
|
|
Debug.Assert(DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT <= 32, "Transmission and Texture flags (32-bit integer) cannot support more than 32 profiles.");
|
|
|
|
UpdateCache();
|
|
}
|
|
|
|
static void ValidateArray<T>(ref T[] array, int len)
|
|
{
|
|
if (array == null || array.Length != len)
|
|
array = new T[len];
|
|
}
|
|
|
|
public void UpdateCache()
|
|
{
|
|
for (int i = 0; i < DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT - 1; i++)
|
|
{
|
|
UpdateCache(i);
|
|
}
|
|
|
|
// Fill the neutral profile.
|
|
int neutralId = DiffusionProfileConstants.DIFFUSION_PROFILE_NEUTRAL_ID;
|
|
|
|
worldScales[neutralId] = Vector4.one;
|
|
shapeParams[neutralId] = Vector4.zero;
|
|
transmissionTintsAndFresnel0[neutralId].w = 0.04f; // Match DEFAULT_SPECULAR_VALUE defined in Lit.hlsl
|
|
|
|
for (int j = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD; j < n; j++)
|
|
{
|
|
filterKernels[n * neutralId + j].x = 0f;
|
|
filterKernels[n * neutralId + j].y = 1f;
|
|
filterKernels[n * neutralId + j].z = 0f;
|
|
filterKernels[n * neutralId + j].w = 1f;
|
|
}
|
|
|
|
// Old SSS Model >>>
|
|
halfRcpWeightedVariances[neutralId] = Vector4.one;
|
|
|
|
for (int j = 0, n = DiffusionProfileConstants.SSS_BASIC_N_SAMPLES; j < n; j++)
|
|
{
|
|
filterKernelsBasic[n * neutralId + j] = Vector4.one;
|
|
filterKernelsBasic[n * neutralId + j].w = 0f;
|
|
}
|
|
// <<< Old SSS Model
|
|
}
|
|
|
|
public void UpdateCache(int p)
|
|
{
|
|
// 'p' is the profile array index. 'i' is the index in the shader (accounting for the neutral profile).
|
|
int i = p + 1;
|
|
|
|
// Erase previous value (This need to be done here individually as in the SSS editor we edit individual component)
|
|
uint mask = 1u << i;
|
|
texturingModeFlags &= ~mask;
|
|
mask = 1u << i;
|
|
transmissionFlags &= ~mask;
|
|
|
|
texturingModeFlags |= (uint)profiles[p].texturingMode << i;
|
|
transmissionFlags |= (uint)profiles[p].transmissionMode << i;
|
|
|
|
thicknessRemaps[i] = new Vector4(profiles[p].thicknessRemap.x, profiles[p].thicknessRemap.y - profiles[p].thicknessRemap.x, 0f, 0f);
|
|
worldScales[i] = new Vector4(profiles[p].worldScale, 1.0f / profiles[p].worldScale, 0f, 0f);
|
|
shapeParams[i] = profiles[p].shapeParam;
|
|
shapeParams[i].w = profiles[p].maxRadius;
|
|
// Convert ior to fresnel0
|
|
float fresnel0 = (profiles[p].ior - 1.0f) / (profiles[p].ior + 1.0f);
|
|
fresnel0 *= fresnel0; // square
|
|
transmissionTintsAndFresnel0[i] = new Vector4(profiles[p].transmissionTint.r * 0.25f, profiles[p].transmissionTint.g * 0.25f, profiles[p].transmissionTint.b * 0.25f, fresnel0); // Premultiplied
|
|
disabledTransmissionTintsAndFresnel0[i] = new Vector4(0.0f, 0.0f, 0.0f, fresnel0);
|
|
|
|
for (int j = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD; j < n; j++)
|
|
{
|
|
filterKernels[n * i + j].x = profiles[p].filterKernelNearField[j].x;
|
|
filterKernels[n * i + j].y = profiles[p].filterKernelNearField[j].y;
|
|
|
|
if (j < DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD)
|
|
{
|
|
filterKernels[n * i + j].z = profiles[p].filterKernelFarField[j].x;
|
|
filterKernels[n * i + j].w = profiles[p].filterKernelFarField[j].y;
|
|
}
|
|
}
|
|
|
|
// Old SSS Model >>>
|
|
halfRcpWeightedVariances[i] = profiles[p].halfRcpWeightedVariances;
|
|
|
|
var stdDev1 = ((1f / 3f) * DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE) * (Vector4)profiles[p].scatterDistance1;
|
|
var stdDev2 = ((1f / 3f) * DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE) * (Vector4)profiles[p].scatterDistance2;
|
|
|
|
// Multiply by 0.1 to convert from millimeters to centimeters. Apply the distance scale.
|
|
// Rescale by 4 to counter rescaling of transmission tints.
|
|
float a = 0.1f * DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE;
|
|
halfRcpVariancesAndWeights[2 * i + 0] = new Vector4(a * a * 0.5f / (stdDev1.x * stdDev1.x), a * a * 0.5f / (stdDev1.y * stdDev1.y), a * a * 0.5f / (stdDev1.z * stdDev1.z), 4f * (1f - profiles[p].lerpWeight));
|
|
halfRcpVariancesAndWeights[2 * i + 1] = new Vector4(a * a * 0.5f / (stdDev2.x * stdDev2.x), a * a * 0.5f / (stdDev2.y * stdDev2.y), a * a * 0.5f / (stdDev2.z * stdDev2.z), 4f * profiles[p].lerpWeight);
|
|
|
|
for (int j = 0, n = DiffusionProfileConstants.SSS_BASIC_N_SAMPLES; j < n; j++)
|
|
{
|
|
filterKernelsBasic[n * i + j] = profiles[p].filterKernelBasic[j];
|
|
}
|
|
// <<< Old SSS Model
|
|
}
|
|
}
|
|
}
|