您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

2239 行
117 KiB

using UnityEngine.Rendering;
using System.Collections.Generic;
using System;
using UnityEngine.Assertions;
namespace UnityEngine.Experimental.Rendering.HDPipeline
{
class ShadowSetup : IDisposable
{
// shadow related stuff
const int k_MaxShadowDataSlots = 64;
const int k_MaxPayloadSlotsPerShadowData = 4;
ShadowmapBase[] m_Shadowmaps;
ShadowManager m_ShadowMgr;
static ComputeBuffer s_ShadowDataBuffer;
static ComputeBuffer s_ShadowPayloadBuffer;
public static GPUShadowType HDShadowLightType(Light l)
{
// We only process light with additional data
var ald = l.GetComponent<HDAdditionalLightData>();
if (ald == null)
{
return ShadowRegistry.ShadowLightType(l);
}
GPUShadowType shadowType = GPUShadowType.Unknown;
switch (ald.lightTypeExtent)
{
case LightTypeExtent.Punctual:
shadowType = ShadowRegistry.ShadowLightType(l);
break;
// Area and projector not supported yet
}
return shadowType;
}
public ShadowSetup(ShadowInitParameters shadowInit, ShadowSettings shadowSettings, out IShadowManager shadowManager)
{
s_ShadowDataBuffer = new ComputeBuffer( k_MaxShadowDataSlots, System.Runtime.InteropServices.Marshal.SizeOf( typeof( ShadowData ) ) );
s_ShadowPayloadBuffer = new ComputeBuffer( k_MaxShadowDataSlots * k_MaxPayloadSlotsPerShadowData, System.Runtime.InteropServices.Marshal.SizeOf( typeof( ShadowPayload ) ) );
ShadowAtlas.AtlasInit atlasInit;
atlasInit.baseInit.width = (uint)shadowInit.shadowAtlasWidth;
atlasInit.baseInit.height = (uint)shadowInit.shadowAtlasHeight;
atlasInit.baseInit.slices = 1;
atlasInit.baseInit.shadowmapBits = 32;
atlasInit.baseInit.shadowmapFormat = RenderTextureFormat.Shadowmap;
atlasInit.baseInit.samplerState = SamplerState.Default();
atlasInit.baseInit.comparisonSamplerState = ComparisonSamplerState.Default();
atlasInit.baseInit.clearColor = new Vector4( 0.0f, 0.0f, 0.0f, 0.0f );
atlasInit.baseInit.maxPayloadCount = 0;
atlasInit.baseInit.shadowSupport = ShadowmapBase.ShadowSupport.Directional | ShadowmapBase.ShadowSupport.Point | ShadowmapBase.ShadowSupport.Spot;
atlasInit.shaderKeyword = null;
var varianceInit = atlasInit;
varianceInit.baseInit.shadowmapFormat = ShadowVariance.GetFormat( false, false, true );
var varianceInit2 = varianceInit;
varianceInit2.baseInit.shadowmapFormat = ShadowVariance.GetFormat( true, true, false );
var varianceInit3 = varianceInit;
varianceInit3.baseInit.shadowmapFormat = ShadowVariance.GetFormat( true, false, true );
m_Shadowmaps = new ShadowmapBase[] { new ShadowVariance(ref varianceInit), new ShadowVariance(ref varianceInit2), new ShadowVariance(ref varianceInit3), new ShadowAtlas(ref atlasInit) };
ShadowContext.SyncDel syncer = (ShadowContext sc) =>
{
// update buffers
uint offset, count;
ShadowData[] sds;
sc.GetShadowDatas(out sds, out offset, out count);
Debug.Assert(offset == 0);
s_ShadowDataBuffer.SetData(sds); // unfortunately we can't pass an offset or count to this function
ShadowPayload[] payloads;
sc.GetPayloads(out payloads, out offset, out count);
Debug.Assert(offset == 0);
s_ShadowPayloadBuffer.SetData(payloads);
};
// binding code. This needs to be in sync with ShadowContext.hlsl
ShadowContext.BindDel binder = (ShadowContext sc, CommandBuffer cb, ComputeShader computeShader, int computeKernel) =>
{
uint offset, count;
RenderTargetIdentifier[] tex;
sc.GetTex2DArrays(out tex, out offset, out count);
// bind buffers
cb.SetGlobalBuffer(HDShaderIDs._ShadowDatasExp, s_ShadowDataBuffer);
cb.SetGlobalBuffer(HDShaderIDs._ShadowPayloads, s_ShadowPayloadBuffer);
// bind textures
cb.SetGlobalTexture(HDShaderIDs._ShadowmapExp_VSM_0, tex[0]);
cb.SetGlobalTexture(HDShaderIDs._ShadowmapExp_VSM_1, tex[1]);
cb.SetGlobalTexture(HDShaderIDs._ShadowmapExp_VSM_2, tex[2]);
cb.SetGlobalTexture(HDShaderIDs._ShadowmapExp_PCF, tex[3]);
// TODO: Currently samplers are hard coded in ShadowContext.hlsl, so we can't really set them here
};
ShadowContext.CtxtInit scInit;
scInit.storage.maxShadowDataSlots = k_MaxShadowDataSlots;
scInit.storage.maxPayloadSlots = k_MaxShadowDataSlots * k_MaxPayloadSlotsPerShadowData;
scInit.storage.maxTex2DArraySlots = 4;
scInit.storage.maxTexCubeArraySlots = 0;
scInit.storage.maxComparisonSamplerSlots = 1;
scInit.storage.maxSamplerSlots = 4;
scInit.dataSyncer = syncer;
scInit.resourceBinder = binder;
m_ShadowMgr = new ShadowManager(shadowSettings, ref scInit, m_Shadowmaps);
// set global overrides - these need to match the override specified in LightLoop/Shadow.hlsl
bool useGlobalOverrides = true;
m_ShadowMgr.SetGlobalShadowOverride( GPUShadowType.Point , ShadowAlgorithm.PCF, ShadowVariant.V4, ShadowPrecision.High, useGlobalOverrides );
m_ShadowMgr.SetGlobalShadowOverride( GPUShadowType.Spot , ShadowAlgorithm.PCF, ShadowVariant.V4, ShadowPrecision.High, useGlobalOverrides );
m_ShadowMgr.SetGlobalShadowOverride( GPUShadowType.Directional , ShadowAlgorithm.PCF, ShadowVariant.V3, ShadowPrecision.High, useGlobalOverrides );
m_ShadowMgr.SetShadowLightTypeDelegate(HDShadowLightType);
shadowManager = m_ShadowMgr;
}
public void Dispose()
{
if (m_Shadowmaps != null)
{
(m_Shadowmaps[0] as ShadowAtlas).Dispose();
(m_Shadowmaps[1] as ShadowAtlas).Dispose();
(m_Shadowmaps[2] as ShadowAtlas).Dispose();
(m_Shadowmaps[3] as ShadowAtlas).Dispose();
m_Shadowmaps = null;
}
m_ShadowMgr = null;
if (s_ShadowDataBuffer != null)
s_ShadowDataBuffer.Release();
if (s_ShadowPayloadBuffer != null)
s_ShadowPayloadBuffer.Release();
}
}
//-----------------------------------------------------------------------------
// structure definition
//-----------------------------------------------------------------------------
[GenerateHLSL]
public enum LightVolumeType
{
Cone,
Sphere,
Box,
Count
}
[GenerateHLSL]
public enum LightCategory
{
Punctual,
Area,
Env,
Count
}
[GenerateHLSL]
public enum LightFeatureFlags
{
// Light bit mask must match LightDefinitions.s_LightFeatureMaskFlags value
Punctual = 1 << 12,
Area = 1 << 13,
Directional = 1 << 14,
Env = 1 << 15,
Sky = 1 << 16,
SSRefraction = 1 << 17,
SSReflection = 1 << 18,
// If adding more light be sure to not overflow LightDefinitions.s_LightFeatureMaskFlags
}
[GenerateHLSL]
public class LightDefinitions
{
public static int s_MaxNrLightsPerCamera = 1024;
public static int s_MaxNrBigTileLightsPlusOne = 512; // may be overkill but the footprint is 2 bits per pixel using uint16.
public static float s_ViewportScaleZ = 1.0f;
// enable unity's original left-hand shader camera space (right-hand internally in unity).
public static int s_UseLeftHandCameraSpace = 1;
public static int s_TileSizeFptl = 16;
public static int s_TileSizeClustered = 32;
// feature variants
public static int s_NumFeatureVariants = 27;
// Following define the maximum number of bits use in each feature category.
public static uint s_LightFeatureMaskFlags = 0xFFF000;
public static uint s_LightFeatureMaskFlagsOpaque = 0xFFF000 & ~((uint)LightFeatureFlags.SSRefraction); // Opaque don't support screen space refraction
public static uint s_LightFeatureMaskFlagsTransparent = 0xFFF000 & ~((uint)LightFeatureFlags.SSReflection); // Transparent don't support screen space reflection
public static uint s_MaterialFeatureMaskFlags = 0x000FFF; // don't use all bits just to be safe from signed and/or float conversions :/
}
[GenerateHLSL]
public struct SFiniteLightBound
{
public Vector3 boxAxisX;
public Vector3 boxAxisY;
public Vector3 boxAxisZ;
public Vector3 center; // a center in camera space inside the bounding volume of the light source.
public Vector2 scaleXY;
public float radius;
};
[GenerateHLSL]
public struct LightVolumeData
{
public Vector3 lightPos;
public uint lightVolume;
public Vector3 lightAxisX;
public uint lightCategory;
public Vector3 lightAxisY;
public float radiusSq;
public Vector3 lightAxisZ; // spot +Z axis
public float cotan;
public Vector3 boxInnerDist;
public uint featureFlags;
public Vector3 boxInvRange;
public float unused2;
};
public class LightLoop
{
public enum TileClusterDebug : int
{
None,
Tile,
Cluster,
FeatureVariants
};
public enum TileClusterCategoryDebug : int
{
Punctual = 1,
Area = 2,
AreaAndPunctual = 3,
Environment = 4,
EnvironmentAndPunctual = 5,
EnvironmentAndArea = 6,
EnvironmentAndAreaAndPunctual = 7
};
public const int k_MaxDirectionalLightsOnScreen = 4;
public const int k_MaxPunctualLightsOnScreen = 512;
public const int k_MaxAreaLightsOnScreen = 64;
public const int k_MaxLightsOnScreen = k_MaxDirectionalLightsOnScreen + k_MaxPunctualLightsOnScreen + k_MaxAreaLightsOnScreen;
public const int k_MaxEnvLightsOnScreen = 64;
public const int k_MaxShadowOnScreen = 16;
public const int k_MaxCascadeCount = 4; //Should be not less than m_Settings.directionalLightCascadeCount;
static readonly Vector3 k_BoxCullingExtentThreshold = Vector3.one * 0.01f;
// Static keyword is required here else we get a "DestroyBuffer can only be call in main thread"
static ComputeBuffer s_DirectionalLightDatas = null;
static ComputeBuffer s_LightDatas = null;
static ComputeBuffer s_EnvLightDatas = null;
static ComputeBuffer s_shadowDatas = null;
static Texture2DArray m_DefaultTexture2DArray;
static Cubemap m_DefaultTextureCube;
ReflectionProbeCache m_ReflectionProbeCache;
TextureCache2D m_CookieTexArray;
TextureCacheCubemap m_CubeCookieTexArray;
public class LightList
{
public List<DirectionalLightData> directionalLights;
public List<LightData> lights;
public List<EnvLightData> envLights;
public List<ShadowData> shadows;
public Vector4[] directionalShadowSplitSphereSqr;
public List<SFiniteLightBound> bounds;
public List<LightVolumeData> lightVolumes;
public void Clear()
{
directionalLights.Clear();
lights.Clear();
envLights.Clear();
shadows.Clear();
bounds.Clear();
lightVolumes.Clear();
}
public void Allocate()
{
directionalLights = new List<DirectionalLightData>();
lights = new List<LightData>();
envLights = new List<EnvLightData>();
shadows = new List<ShadowData>();
directionalShadowSplitSphereSqr = new Vector4[k_MaxCascadeCount];
bounds = new List<SFiniteLightBound>();
lightVolumes = new List<LightVolumeData>();
}
}
LightList m_lightList;
int m_punctualLightCount = 0;
int m_areaLightCount = 0;
int m_lightCount = 0;
bool m_enableBakeShadowMask = false; // Track if any light require shadow mask. In this case we will need to enable the keyword shadow mask
float m_maxShadowDistance = 0.0f; // Save value from shadow settings
private ComputeShader buildScreenAABBShader { get { return m_Resources.buildScreenAABBShader; } }
private ComputeShader buildPerTileLightListShader { get { return m_Resources.buildPerTileLightListShader; } }
private ComputeShader buildPerBigTileLightListShader { get { return m_Resources.buildPerBigTileLightListShader; } }
private ComputeShader buildPerVoxelLightListShader { get { return m_Resources.buildPerVoxelLightListShader; } }
private ComputeShader buildMaterialFlagsShader { get { return m_Resources.buildMaterialFlagsShader; } }
private ComputeShader buildDispatchIndirectShader { get { return m_Resources.buildDispatchIndirectShader; } }
private ComputeShader clearDispatchIndirectShader { get { return m_Resources.clearDispatchIndirectShader; } }
private ComputeShader deferredComputeShader { get { return m_Resources.deferredComputeShader; } }
private ComputeShader deferredDirectionalShadowComputeShader { get { return m_Resources.deferredDirectionalShadowComputeShader; } }
static int s_GenAABBKernel;
static int s_GenListPerTileKernel;
static int s_GenListPerVoxelKernel;
static int s_ClearVoxelAtomicKernel;
static int s_ClearDispatchIndirectKernel;
static int s_BuildDispatchIndirectKernel;
static int s_BuildMaterialFlagsWriteKernel;
static int s_BuildMaterialFlagsOrKernel;
static int s_shadeOpaqueDirectFptlKernel;
static int s_shadeOpaqueDirectFptlDebugDisplayKernel;
static int s_shadeOpaqueDirectShadowMaskFptlKernel;
static int s_shadeOpaqueDirectShadowMaskFptlDebugDisplayKernel;
static int[] s_shadeOpaqueIndirectFptlKernels = new int[LightDefinitions.s_NumFeatureVariants];
static int[] s_shadeOpaqueIndirectShadowMaskFptlKernels = new int[LightDefinitions.s_NumFeatureVariants];
static int s_deferredDirectionalShadowKernel;
static ComputeBuffer s_LightVolumeDataBuffer = null;
static ComputeBuffer s_ConvexBoundsBuffer = null;
static ComputeBuffer s_AABBBoundsBuffer = null;
static ComputeBuffer s_LightList = null;
static ComputeBuffer s_TileList = null;
static ComputeBuffer s_TileFeatureFlags = null;
static ComputeBuffer s_DispatchIndirectBuffer = null;
static ComputeBuffer s_BigTileLightList = null; // used for pre-pass coarse culling on 64x64 tiles
static int s_GenListPerBigTileKernel;
const bool k_UseDepthBuffer = true; // only has an impact when EnableClustered is true (requires a depth-prepass)
const int k_Log2NumClusters = 6; // accepted range is from 0 to 6. NumClusters is 1<<g_iLog2NumClusters
const float k_ClustLogBase = 1.02f; // each slice 2% bigger than the previous
float m_ClustScale;
static ComputeBuffer s_PerVoxelLightLists = null;
static ComputeBuffer s_PerVoxelOffset = null;
static ComputeBuffer s_PerTileLogBaseTweak = null;
static ComputeBuffer s_GlobalLightListAtomic = null;
// clustered light list specific buffers and data end
FrameSettings m_FrameSettings = null;
RenderPipelineResources m_Resources = null;
// this defualt additionalLightData is use for lights that don't have any (like preview light)
HDAdditionalLightData defaultHDAdditionalLightData = new HDAdditionalLightData();
HDAdditionalReflectionData defaultHDAdditionalReflectionData = new HDAdditionalReflectionData();
// Following is an array of material of size eight for all combination of keyword: OUTPUT_SPLIT_LIGHTING - LIGHTLOOP_TILE_PASS - SHADOWS_SHADOWMASK - USE_FPTL_LIGHTLIST/USE_CLUSTERED_LIGHTLIST - DEBUG_DISPLAY
Material[] m_deferredLightingMaterial;
Material m_DebugViewTilesMaterial;
Light m_CurrentSunLight;
int m_CurrentSunLightShadowIndex = -1;
public Light GetCurrentSunLight() { return m_CurrentSunLight; }
// shadow related stuff
FrameId m_FrameId = new FrameId();
ShadowSetup m_ShadowSetup; // doesn't actually have to reside here, it would be enough to pass the IShadowManager in from the outside
IShadowManager m_ShadowMgr;
List<int> m_ShadowRequests = new List<int>();
Dictionary<int, int> m_ShadowIndices = new Dictionary<int, int>();
void InitShadowSystem(ShadowInitParameters initParam, ShadowSettings shadowSettings)
{
m_ShadowSetup = new ShadowSetup(initParam, shadowSettings, out m_ShadowMgr);
}
void DeinitShadowSystem()
{
if (m_ShadowSetup != null)
{
m_ShadowSetup.Dispose();
m_ShadowSetup = null;
m_ShadowMgr = null;
}
}
int GetNumTileFtplX(Camera camera)
{
return (camera.pixelWidth + (LightDefinitions.s_TileSizeFptl - 1)) / LightDefinitions.s_TileSizeFptl;
}
int GetNumTileFtplY(Camera camera)
{
return (camera.pixelHeight + (LightDefinitions.s_TileSizeFptl - 1)) / LightDefinitions.s_TileSizeFptl;
}
int GetNumTileClusteredX(Camera camera)
{
return (camera.pixelWidth + (LightDefinitions.s_TileSizeClustered - 1)) / LightDefinitions.s_TileSizeClustered;
}
int GetNumTileClusteredY(Camera camera)
{
return (camera.pixelHeight + (LightDefinitions.s_TileSizeClustered - 1)) / LightDefinitions.s_TileSizeClustered;
}
public bool GetFeatureVariantsEnabled()
{
return !m_FrameSettings.enableForwardRenderingOnly && m_FrameSettings.lightLoopSettings.isFptlEnabled && m_FrameSettings.lightLoopSettings.enableComputeLightEvaluation &&
(m_FrameSettings.lightLoopSettings.enableComputeLightVariants || m_FrameSettings.lightLoopSettings.enableComputeMaterialVariants);
}
public LightLoop()
{}
int GetDeferredLightingMaterialIndex(int outputSplitLighting, int lightLoopTilePass, int shadowMask, int debugDisplay)
{
return (outputSplitLighting) | (lightLoopTilePass << 1) | (shadowMask << 2) | (debugDisplay << 3);
}
public void Build(HDRenderPipelineAsset hdAsset, ShadowSettings shadowSettings, IBLFilterGGX iblFilterGGX)
{
m_Resources = hdAsset.renderPipelineResources;
m_lightList = new LightList();
m_lightList.Allocate();
s_DirectionalLightDatas = new ComputeBuffer(k_MaxDirectionalLightsOnScreen, System.Runtime.InteropServices.Marshal.SizeOf(typeof(DirectionalLightData)));
s_LightDatas = new ComputeBuffer(k_MaxPunctualLightsOnScreen + k_MaxAreaLightsOnScreen, System.Runtime.InteropServices.Marshal.SizeOf(typeof(LightData)));
s_EnvLightDatas = new ComputeBuffer(k_MaxEnvLightsOnScreen, System.Runtime.InteropServices.Marshal.SizeOf(typeof(EnvLightData)));
s_shadowDatas = new ComputeBuffer(k_MaxCascadeCount + k_MaxShadowOnScreen, System.Runtime.InteropServices.Marshal.SizeOf(typeof(ShadowData)));
GlobalLightLoopSettings gLightLoopSettings = hdAsset.GetRenderPipelineSettings().lightLoopSettings;
m_CookieTexArray = new TextureCache2D();
m_CookieTexArray.AllocTextureArray(gLightLoopSettings.cookieTexArraySize, gLightLoopSettings.spotCookieSize, gLightLoopSettings.spotCookieSize, TextureFormat.RGBA32, true);
m_CubeCookieTexArray = new TextureCacheCubemap();
m_CubeCookieTexArray.AllocTextureArray(gLightLoopSettings.cubeCookieTexArraySize, gLightLoopSettings.pointCookieSize, TextureFormat.RGBA32, true);
TextureFormat probeCacheFormat = gLightLoopSettings.reflectionCacheCompressed ? TextureFormat.BC6H : TextureFormat.RGBAHalf;
m_ReflectionProbeCache = new ReflectionProbeCache(iblFilterGGX, gLightLoopSettings.reflectionProbeCacheSize, gLightLoopSettings.reflectionCubemapSize, probeCacheFormat, true);
s_GenAABBKernel = buildScreenAABBShader.FindKernel("ScreenBoundsAABB");
s_AABBBoundsBuffer = new ComputeBuffer(2 * k_MaxLightsOnScreen, 3 * sizeof(float));
s_ConvexBoundsBuffer = new ComputeBuffer(k_MaxLightsOnScreen, System.Runtime.InteropServices.Marshal.SizeOf(typeof(SFiniteLightBound)));
s_LightVolumeDataBuffer = new ComputeBuffer(k_MaxLightsOnScreen, System.Runtime.InteropServices.Marshal.SizeOf(typeof(LightVolumeData)));
s_DispatchIndirectBuffer = new ComputeBuffer(LightDefinitions.s_NumFeatureVariants * 3, sizeof(uint), ComputeBufferType.IndirectArguments);
// Cluster
{
s_ClearVoxelAtomicKernel = buildPerVoxelLightListShader.FindKernel("ClearAtomic");
s_GlobalLightListAtomic = new ComputeBuffer(1, sizeof(uint));
}
s_GenListPerBigTileKernel = buildPerBigTileLightListShader.FindKernel("BigTileLightListGen");
s_BuildDispatchIndirectKernel = buildDispatchIndirectShader.FindKernel("BuildDispatchIndirect");
s_ClearDispatchIndirectKernel = clearDispatchIndirectShader.FindKernel("ClearDispatchIndirect");
s_BuildMaterialFlagsOrKernel = buildMaterialFlagsShader.FindKernel("MaterialFlagsGen_Or");
s_BuildMaterialFlagsWriteKernel = buildMaterialFlagsShader.FindKernel("MaterialFlagsGen_Write");
s_shadeOpaqueDirectFptlKernel = deferredComputeShader.FindKernel("Deferred_Direct_Fptl");
s_shadeOpaqueDirectFptlDebugDisplayKernel = deferredComputeShader.FindKernel("Deferred_Direct_Fptl_DebugDisplay");
s_shadeOpaqueDirectShadowMaskFptlKernel = deferredComputeShader.FindKernel("Deferred_Direct_ShadowMask_Fptl");
s_shadeOpaqueDirectShadowMaskFptlDebugDisplayKernel = deferredComputeShader.FindKernel("Deferred_Direct_ShadowMask_Fptl_DebugDisplay");
s_deferredDirectionalShadowKernel = deferredDirectionalShadowComputeShader.FindKernel("DeferredDirectionalShadow");
for (int variant = 0; variant < LightDefinitions.s_NumFeatureVariants; variant++)
{
s_shadeOpaqueIndirectFptlKernels[variant] = deferredComputeShader.FindKernel("Deferred_Indirect_Fptl_Variant" + variant);
s_shadeOpaqueIndirectShadowMaskFptlKernels[variant] = deferredComputeShader.FindKernel("Deferred_Indirect_ShadowMask_Fptl_Variant" + variant);
}
s_LightList = null;
s_TileList = null;
s_TileFeatureFlags = null;
// OUTPUT_SPLIT_LIGHTING - LIGHTLOOP_TILE_PASS - SHADOWS_SHADOWMASK - DEBUG_DISPLAY
m_deferredLightingMaterial = new Material[16];
for (int outputSplitLighting = 0; outputSplitLighting < 2; ++outputSplitLighting)
{
for (int lightLoopTilePass = 0; lightLoopTilePass < 2; ++lightLoopTilePass)
{
for (int shadowMask = 0; shadowMask < 2; ++shadowMask)
{
for (int debugDisplay = 0; debugDisplay < 2; ++debugDisplay)
{
int index = GetDeferredLightingMaterialIndex(outputSplitLighting, lightLoopTilePass, shadowMask, debugDisplay);
m_deferredLightingMaterial[index] = CoreUtils.CreateEngineMaterial(m_Resources.deferredShader);
CoreUtils.SetKeyword(m_deferredLightingMaterial[index], "OUTPUT_SPLIT_LIGHTING", outputSplitLighting == 1);
CoreUtils.SelectKeyword(m_deferredLightingMaterial[index], "LIGHTLOOP_TILE_PASS", "LIGHTLOOP_SINGLE_PASS", lightLoopTilePass == 1);
CoreUtils.SetKeyword(m_deferredLightingMaterial[index], "SHADOWS_SHADOWMASK", shadowMask == 1);
CoreUtils.SetKeyword(m_deferredLightingMaterial[index], "DEBUG_DISPLAY", debugDisplay == 1);
m_deferredLightingMaterial[index].SetInt(HDShaderIDs._StencilRef, outputSplitLighting == 1 ? (int)StencilLightingUsage.SplitLighting : (int)StencilLightingUsage.RegularLighting);
m_deferredLightingMaterial[index].SetInt(HDShaderIDs._StencilCmp, (int)CompareFunction.Equal);
m_deferredLightingMaterial[index].SetInt(HDShaderIDs._SrcBlend, (int)BlendMode.One);
m_deferredLightingMaterial[index].SetInt(HDShaderIDs._DstBlend, (int)BlendMode.Zero);
}
}
}
}
m_DebugViewTilesMaterial = CoreUtils.CreateEngineMaterial(m_Resources.debugViewTilesShader);
m_DefaultTexture2DArray = new Texture2DArray(1, 1, 1, TextureFormat.ARGB32, false);
m_DefaultTexture2DArray.SetPixels32(new Color32[1] { new Color32(128, 128, 128, 128) }, 0);
m_DefaultTexture2DArray.Apply();
m_DefaultTextureCube = new Cubemap(16, TextureFormat.ARGB32, false);
m_DefaultTextureCube.Apply();
#if UNITY_EDITOR
UnityEditor.SceneView.onSceneGUIDelegate -= OnSceneGUI;
UnityEditor.SceneView.onSceneGUIDelegate += OnSceneGUI;
#endif
InitShadowSystem(hdAsset.GetRenderPipelineSettings().shadowInitParams, shadowSettings);
}
public void Cleanup()
{
DeinitShadowSystem();
#if UNITY_EDITOR
UnityEditor.SceneView.onSceneGUIDelegate -= OnSceneGUI;
#endif
CoreUtils.SafeRelease(s_DirectionalLightDatas);
CoreUtils.SafeRelease(s_LightDatas);
CoreUtils.SafeRelease(s_EnvLightDatas);
CoreUtils.SafeRelease(s_shadowDatas);
if (m_ReflectionProbeCache != null)
{
m_ReflectionProbeCache.Release();
m_ReflectionProbeCache = null;
}
if (m_CookieTexArray != null)
{
m_CookieTexArray.Release();
m_CookieTexArray = null;
}
if (m_CubeCookieTexArray != null)
{
m_CubeCookieTexArray.Release();
m_CubeCookieTexArray = null;
}
ReleaseResolutionDependentBuffers();
CoreUtils.SafeRelease(s_AABBBoundsBuffer);
CoreUtils.SafeRelease(s_ConvexBoundsBuffer);
CoreUtils.SafeRelease(s_LightVolumeDataBuffer);
CoreUtils.SafeRelease(s_DispatchIndirectBuffer);
// enableClustered
CoreUtils.SafeRelease(s_GlobalLightListAtomic);
for (int outputSplitLighting = 0; outputSplitLighting < 2; ++outputSplitLighting)
{
for (int lightLoopTilePass = 0; lightLoopTilePass < 2; ++lightLoopTilePass)
{
for (int shadowMask = 0; shadowMask < 2; ++shadowMask)
{
for (int debugDisplay = 0; debugDisplay < 2; ++debugDisplay)
{
int index = GetDeferredLightingMaterialIndex(outputSplitLighting, lightLoopTilePass, shadowMask, debugDisplay);
CoreUtils.Destroy(m_deferredLightingMaterial[index]);
}
}
}
}
CoreUtils.Destroy(m_DebugViewTilesMaterial);
}
public void NewFrame(FrameSettings frameSettings)
{
m_FrameSettings = frameSettings;
// Cluster
{
var kernelName = m_FrameSettings.lightLoopSettings.enableBigTilePrepass ? (k_UseDepthBuffer ? "TileLightListGen_DepthRT_SrcBigTile" : "TileLightListGen_NoDepthRT_SrcBigTile") : (k_UseDepthBuffer ? "TileLightListGen_DepthRT" : "TileLightListGen_NoDepthRT");
s_GenListPerVoxelKernel = buildPerVoxelLightListShader.FindKernel(kernelName);
}
if (GetFeatureVariantsEnabled())
{
s_GenListPerTileKernel = buildPerTileLightListShader.FindKernel(m_FrameSettings.lightLoopSettings.enableBigTilePrepass ? "TileLightListGen_SrcBigTile_FeatureFlags" : "TileLightListGen_FeatureFlags");
}
else
{
s_GenListPerTileKernel = buildPerTileLightListShader.FindKernel(m_FrameSettings.lightLoopSettings.enableBigTilePrepass ? "TileLightListGen_SrcBigTile" : "TileLightListGen");
}
m_CookieTexArray.NewFrame();
m_CubeCookieTexArray.NewFrame();
m_ReflectionProbeCache.NewFrame();
}
public bool NeedResize()
{
return s_LightList == null || s_TileList == null || s_TileFeatureFlags == null ||
(s_BigTileLightList == null && m_FrameSettings.lightLoopSettings.enableBigTilePrepass) ||
(s_PerVoxelLightLists == null);
}
public void ReleaseResolutionDependentBuffers()
{
CoreUtils.SafeRelease(s_LightList);
CoreUtils.SafeRelease(s_TileList);
CoreUtils.SafeRelease(s_TileFeatureFlags);
// enableClustered
CoreUtils.SafeRelease(s_PerVoxelLightLists);
CoreUtils.SafeRelease(s_PerVoxelOffset);
CoreUtils.SafeRelease(s_PerTileLogBaseTweak);
// enableBigTilePrepass
CoreUtils.SafeRelease(s_BigTileLightList);
}
int NumLightIndicesPerClusteredTile()
{
return 8 * (1 << k_Log2NumClusters); // total footprint for all layers of the tile (measured in light index entries)
}
// TODO: Add proper stereo support
public void AllocResolutionDependentBuffers(int width, int height)
{
var nrTilesX = (width + LightDefinitions.s_TileSizeFptl - 1) / LightDefinitions.s_TileSizeFptl;
var nrTilesY = (height + LightDefinitions.s_TileSizeFptl - 1) / LightDefinitions.s_TileSizeFptl;
var nrTiles = nrTilesX * nrTilesY;
const int capacityUShortsPerTile = 32;
const int dwordsPerTile = (capacityUShortsPerTile + 1) >> 1; // room for 31 lights and a nrLights value.
s_LightList = new ComputeBuffer((int)LightCategory.Count * dwordsPerTile * nrTiles, sizeof(uint)); // enough list memory for a 4k x 4k display
s_TileList = new ComputeBuffer((int)LightDefinitions.s_NumFeatureVariants * nrTiles, sizeof(uint));
s_TileFeatureFlags = new ComputeBuffer(nrTilesX * nrTilesY, sizeof(uint));
// Cluster
{
var nrClustersX = (width + LightDefinitions.s_TileSizeClustered - 1) / LightDefinitions.s_TileSizeClustered;
var nrClustersY = (height + LightDefinitions.s_TileSizeClustered - 1) / LightDefinitions.s_TileSizeClustered;
var nrClusterTiles = nrClustersX * nrClustersY;
s_PerVoxelOffset = new ComputeBuffer((int)LightCategory.Count * (1 << k_Log2NumClusters) * nrClusterTiles, sizeof(uint));
s_PerVoxelLightLists = new ComputeBuffer(NumLightIndicesPerClusteredTile() * nrClusterTiles, sizeof(uint));
if (k_UseDepthBuffer)
{
s_PerTileLogBaseTweak = new ComputeBuffer(nrClusterTiles, sizeof(float));
}
}
if (m_FrameSettings.lightLoopSettings.enableBigTilePrepass)
{
var nrBigTilesX = (width + 63) / 64;
var nrBigTilesY = (height + 63) / 64;
var nrBigTiles = nrBigTilesX * nrBigTilesY;
s_BigTileLightList = new ComputeBuffer(LightDefinitions.s_MaxNrBigTileLightsPlusOne * nrBigTiles, sizeof(uint));
}
}
static Matrix4x4 GetFlipMatrix()
{
Matrix4x4 flip = Matrix4x4.identity;
bool isLeftHand = ((int)LightDefinitions.s_UseLeftHandCameraSpace) != 0;
if (isLeftHand) flip.SetColumn(2, new Vector4(0.0f, 0.0f, -1.0f, 0.0f));
return flip;
}
static Matrix4x4 WorldToCamera(Camera camera)
{
return GetFlipMatrix() * camera.worldToCameraMatrix;
}
static Matrix4x4 CameraProjection(Camera camera)
{
return camera.projectionMatrix * GetFlipMatrix();
}
public Vector3 GetLightColor(VisibleLight light)
{
return new Vector3(light.finalColor.r, light.finalColor.g, light.finalColor.b);
}
public bool GetDirectionalLightData(CommandBuffer cmd, ShadowSettings shadowSettings, GPULightType gpuLightType, VisibleLight light, HDAdditionalLightData additionalData, AdditionalShadowData additionalShadowData, int lightIndex)
{
var directionalLightData = new DirectionalLightData();
float diffuseDimmer = m_FrameSettings.diffuseGlobalDimmer * additionalData.lightDimmer;
float specularDimmer = m_FrameSettings.specularGlobalDimmer * additionalData.lightDimmer;
if (diffuseDimmer <= 0.0f && specularDimmer <= 0.0f)
return false;
// Light direction for directional is opposite to the forward direction
directionalLightData.forward = light.light.transform.forward;
// Rescale for cookies and windowing.
directionalLightData.right = light.light.transform.right * 2 / Mathf.Max(additionalData.shapeWidth, 0.001f);
directionalLightData.up = light.light.transform.up * 2 / Mathf.Max(additionalData.shapeHeight, 0.001f);
directionalLightData.positionWS = light.light.transform.position;
directionalLightData.color = GetLightColor(light);
// Caution: This is bad but if additionalData == defaultHDAdditionalLightData it mean we are trying to promote legacy lights, which is the case for the preview for example, so we need to multiply by PI as legacy Unity do implicit divide by PI for direct intensity.
// So we expect that all light with additionalData == defaultHDAdditionalLightData are currently the one from the preview, light in scene MUST have additionalData
directionalLightData.color *= (defaultHDAdditionalLightData == additionalData) ? Mathf.PI : 1.0f;
directionalLightData.diffuseScale = additionalData.affectDiffuse ? diffuseDimmer : 0.0f;
directionalLightData.specularScale = additionalData.affectSpecular ? specularDimmer : 0.0f;
directionalLightData.shadowIndex = directionalLightData.cookieIndex = -1;
if (light.light.cookie != null)
{
directionalLightData.tileCookie = light.light.cookie.wrapMode == TextureWrapMode.Repeat ? 1 : 0;
directionalLightData.cookieIndex = m_CookieTexArray.FetchSlice(cmd, light.light.cookie);
}
// fix up shadow information
int shadowIdx;
if (m_ShadowIndices.TryGetValue(lightIndex, out shadowIdx))
{
directionalLightData.shadowIndex = shadowIdx;
m_CurrentSunLight = light.light;
m_CurrentSunLightShadowIndex = shadowIdx;
}
// TODO: Currently m_maxShadowDistance is based on shadow settings, but this value is define for a whole level. We should be able to change this value during gameplay
float scale;
float bias;
GetSCaleAndBiasForLinearDistanceFade(m_maxShadowDistance, out scale, out bias);
directionalLightData.fadeDistanceScaleAndBias = new Vector2(scale, bias);
directionalLightData.shadowMaskSelector = Vector4.zero;
if (IsBakedShadowMaskLight(light.light))
{
directionalLightData.shadowMaskSelector[light.light.bakingOutput.occlusionMaskChannel] = 1.0f;
// TODO: make this option per light, not global
directionalLightData.dynamicShadowCasterOnly = QualitySettings.shadowmaskMode == ShadowmaskMode.Shadowmask ? 1 : 0;
}
else
{
// use -1 to say that we don't use shadow mask
directionalLightData.shadowMaskSelector.x = -1.0f;
directionalLightData.dynamicShadowCasterOnly = 0;
}
m_CurrentSunLight = m_CurrentSunLight == null ? light.light : m_CurrentSunLight;
m_lightList.directionalLights.Add(directionalLightData);
return true;
}
void GetSCaleAndBiasForLinearDistanceFade(float fadeDistance, out float scale, out float bias)
{
// Fade with distance calculation is just a linear fade from 90% of fade distance to fade distance. 90% arbitrarily chosen but should work well enough.
float distanceFadeNear = 0.9f * fadeDistance;
scale = 1.0f / (fadeDistance - distanceFadeNear);
bias = - distanceFadeNear / (fadeDistance - distanceFadeNear);
}
float ComputeLinearDistanceFade(float distanceToCamera, float fadeDistance)
{
float scale;
float bias;
GetSCaleAndBiasForLinearDistanceFade(fadeDistance, out scale, out bias);
return 1.0f - Mathf.Clamp01(distanceToCamera * scale + bias);
}
public bool GetLightData(CommandBuffer cmd, ShadowSettings shadowSettings, Camera camera, GPULightType gpuLightType,
VisibleLight light, HDAdditionalLightData additionalLightData, AdditionalShadowData additionalshadowData,
int lightIndex, ref Vector3 lightDimensions)
{
var lightData = new LightData();
lightData.lightType = gpuLightType;
lightData.positionWS = light.light.transform.position;
// Setting 0 for invSqrAttenuationRadius mean we have no range attenuation, but still have inverse square attenuation.
lightData.invSqrAttenuationRadius = additionalLightData.applyRangeAttenuation ? 1.0f / (light.range * light.range) : 0.0f;
lightData.color = GetLightColor(light);
lightData.forward = light.light.transform.forward; // Note: Light direction is oriented backward (-Z)
lightData.up = light.light.transform.up;
lightData.right = light.light.transform.right;
lightDimensions.x = additionalLightData.shapeWidth;
lightDimensions.y = additionalLightData.shapeHeight;
lightDimensions.z = light.range;
if (lightData.lightType == GPULightType.ProjectorBox)
{
lightData.size.x = light.range;
// Rescale for cookies and windowing.
lightData.right *= 2.0f / Mathf.Max(additionalLightData.shapeWidth, 0.001f);
lightData.up *= 2.0f / Mathf.Max(additionalLightData.shapeHeight, 0.001f);
}
else if (lightData.lightType == GPULightType.ProjectorPyramid)
{
// Get width and height for the current frustum
var spotAngle = light.spotAngle;
float frustumWidth, frustumHeight;
if (additionalLightData.aspectRatio >= 1.0f)
{
frustumHeight = 2.0f * Mathf.Tan(spotAngle * 0.5f * Mathf.Deg2Rad);
frustumWidth = frustumHeight * additionalLightData.aspectRatio;
}
else
{
frustumWidth = 2.0f * Mathf.Tan(spotAngle * 0.5f * Mathf.Deg2Rad);
frustumHeight = frustumWidth / additionalLightData.aspectRatio;
}
// Adjust based on the new parametrization.
lightDimensions.x = frustumWidth;
lightDimensions.y = frustumHeight;
// Rescale for cookies and windowing.
lightData.right *= 2.0f / frustumWidth;
lightData.up *= 2.0f / frustumHeight;
}
if (lightData.lightType == GPULightType.Spot)
{
var spotAngle = light.spotAngle;
var innerConePercent = additionalLightData.GetInnerSpotPercent01();
var cosSpotOuterHalfAngle = Mathf.Clamp(Mathf.Cos(spotAngle * 0.5f * Mathf.Deg2Rad), 0.0f, 1.0f);
var sinSpotOuterHalfAngle = Mathf.Sqrt(1.0f - cosSpotOuterHalfAngle * cosSpotOuterHalfAngle);
var cosSpotInnerHalfAngle = Mathf.Clamp(Mathf.Cos(spotAngle * 0.5f * innerConePercent * Mathf.Deg2Rad), 0.0f, 1.0f); // inner cone
var val = Mathf.Max(0.001f, (cosSpotInnerHalfAngle - cosSpotOuterHalfAngle));
lightData.angleScale = 1.0f / val;
lightData.angleOffset = -cosSpotOuterHalfAngle * lightData.angleScale;
// Rescale for cookies and windowing.
float cotOuterHalfAngle = cosSpotOuterHalfAngle / sinSpotOuterHalfAngle;
lightData.up *= cotOuterHalfAngle;
lightData.right *= cotOuterHalfAngle;
}
else
{
// These are the neutral values allowing GetAngleAnttenuation in shader code to return 1.0
lightData.angleScale = 0.0f;
lightData.angleOffset = 1.0f;
}
if (lightData.lightType == GPULightType.Rectangle || lightData.lightType == GPULightType.Line)
{
lightData.size = new Vector2(additionalLightData.shapeWidth, additionalLightData.shapeHeight);
}
float distanceToCamera = (lightData.positionWS - camera.transform.position).magnitude;
float distanceFade = ComputeLinearDistanceFade(distanceToCamera, additionalLightData.fadeDistance);
float lightScale = additionalLightData.lightDimmer * distanceFade;
lightData.diffuseScale = additionalLightData.affectDiffuse ? lightScale * m_FrameSettings.diffuseGlobalDimmer : 0.0f;
lightData.specularScale = additionalLightData.affectSpecular ? lightScale * m_FrameSettings.specularGlobalDimmer : 0.0f;
if (lightData.diffuseScale <= 0.0f && lightData.specularScale <= 0.0f)
return false;
lightData.cookieIndex = -1;
lightData.shadowIndex = -1;
if (light.light.cookie != null)
{
// TODO: add texture atlas support for cookie textures.
switch (light.lightType)
{
case LightType.Spot:
lightData.cookieIndex = m_CookieTexArray.FetchSlice(cmd, light.light.cookie);
break;
case LightType.Point:
lightData.cookieIndex = m_CubeCookieTexArray.FetchSlice(cmd, light.light.cookie);
break;
}
}
else if (light.lightType == LightType.Spot && additionalLightData.spotLightShape != SpotLightShape.Cone)
{
// Projectors lights must always have a cookie texture.
// As long as the cache is a texture array and not an atlas, the 4x4 white texture will be rescaled to 128
lightData.cookieIndex = m_CookieTexArray.FetchSlice(cmd, Texture2D.whiteTexture);
}
if (additionalshadowData)
{
float shadowDistanceFade = ComputeLinearDistanceFade(distanceToCamera, additionalshadowData.shadowFadeDistance);
lightData.shadowDimmer = additionalshadowData.shadowDimmer * shadowDistanceFade;
}
else
{
lightData.shadowDimmer = 1.0f;
}
// fix up shadow information
int shadowIdx;
if (m_ShadowIndices.TryGetValue(lightIndex, out shadowIdx))
{
lightData.shadowIndex = shadowIdx;
}
// Value of max smoothness is from artists point of view, need to convert from perceptual smoothness to roughness
lightData.minRoughness = (1.0f - additionalLightData.maxSmoothness) * (1.0f - additionalLightData.maxSmoothness);
lightData.shadowMaskSelector = Vector4.zero;
if (IsBakedShadowMaskLight(light.light))
{
lightData.shadowMaskSelector[light.light.bakingOutput.occlusionMaskChannel] = 1.0f;
// TODO: make this option per light, not global
lightData.dynamicShadowCasterOnly = QualitySettings.shadowmaskMode == ShadowmaskMode.Shadowmask ? 1 : 0;
}
else
{
// use -1 to say that we don't use shadow mask
lightData.shadowMaskSelector.x = -1.0f;
lightData.dynamicShadowCasterOnly = 0;
}
m_lightList.lights.Add(lightData);
return true;
}
// TODO: we should be able to do this calculation only with LightData without VisibleLight light, but for now pass both
public void GetLightVolumeDataAndBound(LightCategory lightCategory, GPULightType gpuLightType, LightVolumeType lightVolumeType,
VisibleLight light, LightData lightData, Vector3 lightDimensions, Matrix4x4 worldToView)
{
// Then Culling side
var range = lightDimensions.z;
var lightToWorld = light.localToWorld;
Vector3 positionWS = lightData.positionWS;
Vector3 positionVS = worldToView.MultiplyPoint(positionWS);
Matrix4x4 lightToView = worldToView * lightToWorld;
Vector3 xAxisVS = lightToView.GetColumn(0);
Vector3 yAxisVS = lightToView.GetColumn(1);
Vector3 zAxisVS = lightToView.GetColumn(2);
// Fill bounds
var bound = new SFiniteLightBound();
var lightVolumeData = new LightVolumeData();
lightVolumeData.lightCategory = (uint)lightCategory;
lightVolumeData.lightVolume = (uint)lightVolumeType;
if (gpuLightType == GPULightType.Spot || gpuLightType == GPULightType.ProjectorPyramid)
{
Vector3 lightDir = lightToWorld.GetColumn(2);
// represents a left hand coordinate system in world space since det(worldToView)<0
Vector3 vx = xAxisVS;
Vector3 vy = yAxisVS;
Vector3 vz = zAxisVS;
const float pi = 3.1415926535897932384626433832795f;
const float degToRad = (float)(pi / 180.0);
var sa = light.light.spotAngle;
var cs = Mathf.Cos(0.5f * sa * degToRad);
var si = Mathf.Sin(0.5f * sa * degToRad);
if (gpuLightType == GPULightType.ProjectorPyramid)
{
Vector3 lightPosToProjWindowCorner = (0.5f * lightDimensions.x) * vx + (0.5f * lightDimensions.y) * vy + 1.0f * vz;
cs = Vector3.Dot(vz, Vector3.Normalize(lightPosToProjWindowCorner));
si = Mathf.Sqrt(1.0f - cs * cs);
}
const float FltMax = 3.402823466e+38F;
var ta = cs > 0.0f ? (si / cs) : FltMax;
var cota = si > 0.0f ? (cs / si) : FltMax;
//const float cotasa = l.GetCotanHalfSpotAngle();
// apply nonuniform scale to OBB of spot light
var squeeze = true;//sa < 0.7f * 90.0f; // arb heuristic
var fS = squeeze ? ta : si;
bound.center = worldToView.MultiplyPoint(positionWS + ((0.5f * range) * lightDir)); // use mid point of the spot as the center of the bounding volume for building screen-space AABB for tiled lighting.
// scale axis to match box or base of pyramid
bound.boxAxisX = (fS * range) * vx;
bound.boxAxisY = (fS * range) * vy;
bound.boxAxisZ = (0.5f * range) * vz;
// generate bounding sphere radius
var fAltDx = si;
var fAltDy = cs;
fAltDy = fAltDy - 0.5f;
//if(fAltDy<0) fAltDy=-fAltDy;
fAltDx *= range; fAltDy *= range;
// Handle case of pyramid with this select (currently unused)
var altDist = Mathf.Sqrt(fAltDy * fAltDy + (true ? 1.0f : 2.0f) * fAltDx * fAltDx);
bound.radius = altDist > (0.5f * range) ? altDist : (0.5f * range); // will always pick fAltDist
bound.scaleXY = squeeze ? new Vector2(0.01f, 0.01f) : new Vector2(1.0f, 1.0f);
lightVolumeData.lightAxisX = vx;
lightVolumeData.lightAxisY = vy;
lightVolumeData.lightAxisZ = vz;
lightVolumeData.lightPos = positionVS;
lightVolumeData.radiusSq = range * range;
lightVolumeData.cotan = cota;
lightVolumeData.featureFlags = (uint)LightFeatureFlags.Punctual;
}
else if (gpuLightType == GPULightType.Point)
{
Vector3 vx = xAxisVS;
Vector3 vy = yAxisVS;
Vector3 vz = zAxisVS;
bound.center = positionVS;
bound.boxAxisX = vx * range;
bound.boxAxisY = vy * range;
bound.boxAxisZ = vz * range;
bound.scaleXY.Set(1.0f, 1.0f);
bound.radius = range;
// fill up ldata
lightVolumeData.lightAxisX = vx;
lightVolumeData.lightAxisY = vy;
lightVolumeData.lightAxisZ = vz;
lightVolumeData.lightPos = bound.center;
lightVolumeData.radiusSq = range * range;
lightVolumeData.featureFlags = (uint)LightFeatureFlags.Punctual;
}
else if (gpuLightType == GPULightType.Line)
{
Vector3 dimensions = new Vector3(lightDimensions.x + 2 * range, 2 * range, 2 * range); // Omni-directional
Vector3 extents = 0.5f * dimensions;
bound.center = positionVS;
bound.boxAxisX = extents.x * xAxisVS;
bound.boxAxisY = extents.y * yAxisVS;
bound.boxAxisZ = extents.z * zAxisVS;
bound.scaleXY.Set(1.0f, 1.0f);
bound.radius = extents.magnitude;
lightVolumeData.lightPos = positionVS;
lightVolumeData.lightAxisX = xAxisVS;
lightVolumeData.lightAxisY = yAxisVS;
lightVolumeData.lightAxisZ = zAxisVS;
lightVolumeData.boxInnerDist = new Vector3(lightDimensions.x, 0, 0);
lightVolumeData.boxInvRange.Set(1.0f / range, 1.0f / range, 1.0f / range);
lightVolumeData.featureFlags = (uint)LightFeatureFlags.Area;
}
else if (gpuLightType == GPULightType.Rectangle)
{
Vector3 dimensions = new Vector3(lightDimensions.x + 2 * range, lightDimensions.y + 2 * range, range); // One-sided
Vector3 extents = 0.5f * dimensions;
Vector3 centerVS = positionVS + extents.z * zAxisVS;
bound.center = centerVS;
bound.boxAxisX = extents.x * xAxisVS;
bound.boxAxisY = extents.y * yAxisVS;
bound.boxAxisZ = extents.z * zAxisVS;
bound.scaleXY.Set(1.0f, 1.0f);
bound.radius = extents.magnitude;
lightVolumeData.lightPos = centerVS;
lightVolumeData.lightAxisX = xAxisVS;
lightVolumeData.lightAxisY = yAxisVS;
lightVolumeData.lightAxisZ = zAxisVS;
lightVolumeData.boxInnerDist = extents;
lightVolumeData.boxInvRange.Set(Mathf.Infinity, Mathf.Infinity, Mathf.Infinity);
lightVolumeData.featureFlags = (uint)LightFeatureFlags.Area;
}
else if (gpuLightType == GPULightType.ProjectorBox)
{
Vector3 dimensions = new Vector3(lightDimensions.x, lightDimensions.y, range); // One-sided
Vector3 extents = 0.5f * dimensions;
Vector3 centerVS = positionVS + extents.z * zAxisVS;
bound.center = centerVS;
bound.boxAxisX = extents.x * xAxisVS;
bound.boxAxisY = extents.y * yAxisVS;
bound.boxAxisZ = extents.z * zAxisVS;
bound.radius = extents.magnitude;
bound.scaleXY.Set(1.0f, 1.0f);
lightVolumeData.lightPos = centerVS;
lightVolumeData.lightAxisX = xAxisVS;
lightVolumeData.lightAxisY = yAxisVS;
lightVolumeData.lightAxisZ = zAxisVS;
lightVolumeData.boxInnerDist = extents;
lightVolumeData.boxInvRange.Set(Mathf.Infinity, Mathf.Infinity, Mathf.Infinity);
lightVolumeData.featureFlags = (uint)LightFeatureFlags.Punctual;
}
else
{
Debug.Assert(false, "TODO: encountered an unknown GPULightType.");
}
m_lightList.bounds.Add(bound);
m_lightList.lightVolumes.Add(lightVolumeData);
}
public bool GetEnvLightData(CommandBuffer cmd, Camera camera, VisibleReflectionProbe probe)
{
var additionalData = GetHDAdditionalReflectionData(probe);
var extents = probe.bounds.extents;
var influenceBlendDistancePositive = Vector3.one * probe.blendDistance;
var influenceBlendDistanceNegative = Vector3.one * probe.blendDistance;
// For now we won't display real time probe when rendering one.
// TODO: We may want to display last frame result but in this case we need to be careful not to update the atlas before all realtime probes are rendered (for frame coherency).
// Unfortunately we don't have this information at the moment.
if (probe.probe.mode == ReflectionProbeMode.Realtime && camera.cameraType == CameraType.Reflection)
return false;
int envIndex = m_ReflectionProbeCache.FetchSlice(cmd, probe.texture);
// -1 means that the texture is not ready yet (ie not convolved/compressed yet)
if (envIndex == -1)
return false;
var envLightData = new EnvLightData();
// CAUTION: localToWorld is the transform for the widget of the reflection probe. i.e the world position of the point use to do the cubemap capture (mean it include the local offset)
envLightData.positionWS = probe.localToWorld.GetColumn(3);
envLightData.boxSideFadePositive = Vector3.one;
envLightData.boxSideFadeNegative = Vector3.one;
envLightData.minProjectionDistance = 0;
switch (additionalData.influenceShape)
{
case ReflectionInfluenceShape.Box:
{
envLightData.envShapeType = EnvShapeType.Box;
envLightData.boxSideFadePositive = additionalData.boxSideFadePositive;
envLightData.boxSideFadeNegative = additionalData.boxSideFadeNegative;
break;
}
case ReflectionInfluenceShape.Sphere:
envLightData.envShapeType = EnvShapeType.Sphere;
extents = Vector3.one * additionalData.influenceSphereRadius;
break;
}
if (probe.boxProjection == 0)
envLightData.minProjectionDistance = 65504.0f;
envLightData.dimmer = additionalData.dimmer;
envLightData.blendNormalDistancePositive = additionalData.blendNormalDistancePositive;
envLightData.blendNormalDistanceNegative = additionalData.blendNormalDistanceNegative;
influenceBlendDistancePositive = additionalData.blendDistancePositive;
influenceBlendDistanceNegative = additionalData.blendDistanceNegative;
// remove scale from the matrix (Scale in this matrix is use to scale the widget)
envLightData.right = probe.localToWorld.GetColumn(0);
envLightData.right.Normalize();
envLightData.up = probe.localToWorld.GetColumn(1);
envLightData.up.Normalize();
envLightData.forward = probe.localToWorld.GetColumn(2);
envLightData.forward.Normalize();
// Artists prefer to have blend distance inside the volume!
// So we let the current UI but we assume blendDistance is an inside factor instead
// Blend distance can't be larger than the max radius
// probe.bounds.extents is BoxSize / 2
var blendDistancePositive = Vector3.Min(probe.bounds.extents, influenceBlendDistancePositive);
var blendDistanceNegative = Vector3.Min(probe.bounds.extents, influenceBlendDistanceNegative);
envLightData.influenceExtents = extents;
envLightData.envIndex = envIndex;
envLightData.offsetLS = probe.center; // center is misnamed, it is the offset (in local space) from center of the bounding box to the cubemap capture point
envLightData.blendDistancePositive = blendDistancePositive;
envLightData.blendDistanceNegative = blendDistanceNegative;
m_lightList.envLights.Add(envLightData);
return true;
}
public void GetEnvLightVolumeDataAndBound(VisibleReflectionProbe probe, LightVolumeType lightVolumeType, Matrix4x4 worldToView)
{
var add = GetHDAdditionalReflectionData(probe);
var bound = new SFiniteLightBound();
var lightVolumeData = new LightVolumeData();
var centerOffset = probe.center; // reflection volume offset relative to cube map capture point
var mat = probe.localToWorld;
Vector3 vx = mat.GetColumn(0);
Vector3 vy = mat.GetColumn(1);
Vector3 vz = mat.GetColumn(2);
Vector3 vw = mat.GetColumn(3);
vx.Normalize(); // Scale shouldn't affect the probe or its bounds
vy.Normalize();
vz.Normalize();
// C is reflection volume center in world space (NOT same as cube map capture point)
var influenceExtents = probe.bounds.extents; // 0.5f * Vector3.Max(-boxSizes[p], boxSizes[p]);
var centerWS = vx * centerOffset.x + vy * centerOffset.y + vz * centerOffset.z + vw;
// transform to camera space (becomes a left hand coordinate frame in Unity since Determinant(worldToView)<0)
vx = worldToView.MultiplyVector(vx);
vy = worldToView.MultiplyVector(vy);
vz = worldToView.MultiplyVector(vz);
var centerVS = worldToView.MultiplyPoint(centerWS);
lightVolumeData.lightCategory = (uint)LightCategory.Env;
lightVolumeData.lightVolume = (uint)lightVolumeType;
lightVolumeData.featureFlags = (uint)LightFeatureFlags.Env;
switch (lightVolumeType)
{
case LightVolumeType.Sphere:
{
lightVolumeData.lightPos = centerVS;
lightVolumeData.radiusSq = add.influenceSphereRadius * add.influenceSphereRadius;
lightVolumeData.lightAxisX = vx;
lightVolumeData.lightAxisY = vy;
lightVolumeData.lightAxisZ = vz;
bound.center = centerVS;
bound.boxAxisX = vx * add.influenceSphereRadius;
bound.boxAxisY = vy * add.influenceSphereRadius;
bound.boxAxisZ = vz * add.influenceSphereRadius;
bound.scaleXY.Set(1.0f, 1.0f);
bound.radius = add.influenceSphereRadius;
break;
}
case LightVolumeType.Box:
{
bound.center = centerVS;
bound.boxAxisX = influenceExtents.x * vx;
bound.boxAxisY = influenceExtents.y * vy;
bound.boxAxisZ = influenceExtents.z * vz;
bound.scaleXY.Set(1.0f, 1.0f);
bound.radius = influenceExtents.magnitude;
// The culling system culls pixels that are further
// than a threshold to the box influence extents.
// So we use an arbitrary threshold here (k_BoxCullingExtentOffset)
lightVolumeData.lightPos = centerVS;
lightVolumeData.lightAxisX = vx;
lightVolumeData.lightAxisY = vy;
lightVolumeData.lightAxisZ = vz;
lightVolumeData.boxInnerDist = influenceExtents - k_BoxCullingExtentThreshold;
lightVolumeData.boxInvRange.Set(1.0f / k_BoxCullingExtentThreshold.x, 1.0f / k_BoxCullingExtentThreshold.y, 1.0f / k_BoxCullingExtentThreshold.z);
break;
}
}
m_lightList.bounds.Add(bound);
m_lightList.lightVolumes.Add(lightVolumeData);
}
public int GetCurrentShadowCount()
{
return m_ShadowRequests.Count;
}
public int GetShadowAtlasCount()
{
return (m_ShadowMgr == null) ? 0 : (int)m_ShadowMgr.GetShadowMapCount();
}
public void UpdateCullingParameters(ref ScriptableCullingParameters cullingParams)
{
m_ShadowMgr.UpdateCullingParameters( ref cullingParams );
}
public bool IsBakedShadowMaskLight(Light light)
{
return light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed &&
light.bakingOutput.mixedLightingMode == MixedLightingMode.Shadowmask &&
light.bakingOutput.occlusionMaskChannel != -1; // We need to have an occlusion mask channel assign, else we have no shadow mask
}
// Return true if BakedShadowMask are enabled
public bool PrepareLightsForGPU(CommandBuffer cmd, ShadowSettings shadowSettings, CullResults cullResults, Camera camera)
{
using (new ProfilingSample(cmd, "Prepare Lights For GPU"))
{
// If any light require it, we need to enabled bake shadow mask feature
m_enableBakeShadowMask = false;
m_lightList.Clear();
Vector3 camPosWS = camera.transform.position;
// Note: Light with null intensity/Color are culled by the C++, no need to test it here
if (cullResults.visibleLights.Count != 0 || cullResults.visibleReflectionProbes.Count != 0)
{
// 0. deal with shadows
{
m_FrameId.frameCount++;
// get the indices for all lights that want to have shadows
m_ShadowRequests.Clear();
m_ShadowRequests.Capacity = cullResults.visibleLights.Count;
int lcnt = cullResults.visibleLights.Count;
for (int i = 0; i < lcnt; ++i)
{
VisibleLight vl = cullResults.visibleLights[i];
if (vl.light.shadows == LightShadows.None)
continue;
AdditionalShadowData asd = vl.light.GetComponent<AdditionalShadowData>();
if (asd != null && asd.shadowDimmer > 0.0f)
m_ShadowRequests.Add(i);
}
// pass this list to a routine that assigns shadows based on some heuristic
uint shadowRequestCount = (uint)m_ShadowRequests.Count;
//TODO: Do not call ToArray here to avoid GC, refactor API
int[] shadowRequests = m_ShadowRequests.ToArray();
int[] shadowDataIndices;
m_ShadowMgr.ProcessShadowRequests(m_FrameId, cullResults, camera, ShaderConfig.s_CameraRelativeRendering != 0, cullResults.visibleLights,
ref shadowRequestCount, shadowRequests, out shadowDataIndices);
// update the visibleLights with the shadow information
m_ShadowIndices.Clear();
for (uint i = 0; i < shadowRequestCount; i++)
{
m_ShadowIndices.Add(shadowRequests[i], shadowDataIndices[i]);
}
}
// 1. Count the number of lights and sort all lights by category, type and volume - This is required for the fptl/cluster shader code
// If we reach maximum of lights available on screen, then we discard the light.
// Lights are processed in order, so we don't discards light based on their importance but based on their ordering in visible lights list.
int directionalLightcount = 0;
int punctualLightcount = 0;
int areaLightCount = 0;
int lightCount = Math.Min(cullResults.visibleLights.Count, k_MaxLightsOnScreen);
var sortKeys = new uint[lightCount];
int sortCount = 0;
for (int lightIndex = 0, numLights = cullResults.visibleLights.Count; (lightIndex < numLights) && (sortCount < lightCount); ++lightIndex)
{
var light = cullResults.visibleLights[lightIndex];
// Light should always have additional data, however preview light right don't have, so we must handle the case by assigning defaultHDAdditionalLightData
var additionalData = GetHDAdditionalLightData(light);
LightCategory lightCategory = LightCategory.Count;
GPULightType gpuLightType = GPULightType.Point;
LightVolumeType lightVolumeType = LightVolumeType.Count;
if (additionalData.lightTypeExtent == LightTypeExtent.Punctual)
{
lightCategory = LightCategory.Punctual;
switch (light.lightType)
{
case LightType.Spot:
if (punctualLightcount >= k_MaxPunctualLightsOnScreen)
continue;
switch (additionalData.spotLightShape)
{
case SpotLightShape.Cone:
gpuLightType = GPULightType.Spot;
lightVolumeType = LightVolumeType.Cone;
break;
case SpotLightShape.Pyramid:
gpuLightType = GPULightType.ProjectorPyramid;
lightVolumeType = LightVolumeType.Cone;
break;
case SpotLightShape.Box:
gpuLightType = GPULightType.ProjectorBox;
lightVolumeType = LightVolumeType.Box;
break;
default:
Debug.Assert(false, "Encountered an unknown SpotLightShape.");
break;
}
break;
case LightType.Directional:
if (directionalLightcount >= k_MaxDirectionalLightsOnScreen)
continue;
gpuLightType = GPULightType.Directional;
// No need to add volume, always visible
lightVolumeType = LightVolumeType.Count; // Count is none
break;
case LightType.Point:
if (punctualLightcount >= k_MaxPunctualLightsOnScreen)
continue;
gpuLightType = GPULightType.Point;
lightVolumeType = LightVolumeType.Sphere;
break;
default:
Debug.Assert(false, "Encountered an unknown LightType.");
break;
}
}
else
{
lightCategory = LightCategory.Area;
switch (additionalData.lightTypeExtent)
{
case LightTypeExtent.Rectangle:
if (areaLightCount >= k_MaxAreaLightsOnScreen)
continue;
gpuLightType = GPULightType.Rectangle;
lightVolumeType = LightVolumeType.Box;
break;
case LightTypeExtent.Line:
if (areaLightCount >= k_MaxAreaLightsOnScreen)
continue;
gpuLightType = GPULightType.Line;
lightVolumeType = LightVolumeType.Box;
break;
default:
Debug.Assert(false, "Encountered an unknown LightType.");
break;
}
}
uint shadow = m_ShadowIndices.ContainsKey(lightIndex) ? 1u : 0;
// 5 bit (0x1F) light category, 5 bit (0x1F) GPULightType, 5 bit (0x1F) lightVolume, 1 bit for shadow casting, 16 bit index
sortKeys[sortCount++] = (uint)lightCategory << 27 | (uint)gpuLightType << 22 | (uint)lightVolumeType << 17 | shadow << 16 | (uint)lightIndex;
}
CoreUtils.QuickSort(sortKeys, 0, sortCount - 1); // Call our own quicksort instead of Array.Sort(sortKeys, 0, sortCount) so we don't allocate memory (note the SortCount-1 that is different from original call).
// TODO: Refactor shadow management
// The good way of managing shadow:
// Here we sort everyone and we decide which light is important or not (this is the responsibility of the lightloop)
// we allocate shadow slot based on maximum shadow allowed on screen and attribute slot by bigger solid angle
// THEN we ask to the ShadowRender to render the shadow, not the reverse as it is today (i.e render shadow than expect they
// will be use...)
// The lightLoop is in charge, not the shadow pass.
// For now we will still apply the maximum of shadow here but we don't apply the sorting by priority + slot allocation yet
m_CurrentSunLight = null;
m_CurrentSunLightShadowIndex = -1;
// 2. Go through all lights, convert them to GPU format.
// Create simultaneously data for culling (LigthVolumeData and rendering)
var worldToView = WorldToCamera(camera);
for (int sortIndex = 0; sortIndex < sortCount; ++sortIndex)
{
// In 1. we have already classify and sorted the light, we need to use this sorted order here
uint sortKey = sortKeys[sortIndex];
LightCategory lightCategory = (LightCategory)((sortKey >> 27) & 0x1F);
GPULightType gpuLightType = (GPULightType)((sortKey >> 22) & 0x1F);
LightVolumeType lightVolumeType = (LightVolumeType)((sortKey >> 17) & 0x1F);
int lightIndex = (int)(sortKey & 0xFFFF);
var light = cullResults.visibleLights[lightIndex];
m_enableBakeShadowMask = m_enableBakeShadowMask || IsBakedShadowMaskLight(light.light);
// Light should always have additional data, however preview light right don't have, so we must handle the case by assigning defaultHDAdditionalLightData
var additionalLightData = GetHDAdditionalLightData(light);
var additionalShadowData = light.light.GetComponent<AdditionalShadowData>(); // Can be null
// Directional rendering side, it is separated as it is always visible so no volume to handle here
if (gpuLightType == GPULightType.Directional)
{
if (GetDirectionalLightData(cmd, shadowSettings, gpuLightType, light, additionalLightData, additionalShadowData, lightIndex))
{
directionalLightcount++;
// We make the light position camera-relative as late as possible in order
// to allow the preceding code to work with the absolute world space coordinates.
if (ShaderConfig.s_CameraRelativeRendering != 0)
{
// Caution: 'DirectionalLightData.positionWS' is camera-relative after this point.
int n = m_lightList.directionalLights.Count;
DirectionalLightData lightData = m_lightList.directionalLights[n - 1];
lightData.positionWS -= camPosWS;
m_lightList.directionalLights[n - 1] = lightData;
}
}
continue;
}
Vector3 lightDimensions = new Vector3(); // X = length or width, Y = height, Z = range (depth)
// Punctual, area, projector lights - the rendering side.
if (GetLightData(cmd, shadowSettings, camera, gpuLightType, light, additionalLightData, additionalShadowData, lightIndex, ref lightDimensions))
{
switch (lightCategory)
{
case LightCategory.Punctual:
punctualLightcount++;
break;
case LightCategory.Area:
areaLightCount++;
break;
default:
Debug.Assert(false, "TODO: encountered an unknown LightCategory.");
break;
}
// Then culling side. Must be call in this order as we pass the created Light data to the function
GetLightVolumeDataAndBound(lightCategory, gpuLightType, lightVolumeType, light, m_lightList.lights[m_lightList.lights.Count - 1], lightDimensions, worldToView);
// We make the light position camera-relative as late as possible in order
// to allow the preceding code to work with the absolute world space coordinates.
if (ShaderConfig.s_CameraRelativeRendering != 0)
{
// Caution: 'LightData.positionWS' is camera-relative after this point.
int n = m_lightList.lights.Count;
LightData lightData = m_lightList.lights[n - 1];
lightData.positionWS -= camPosWS;
m_lightList.lights[n - 1] = lightData;
}
}
}
// Sanity check
Debug.Assert(m_lightList.directionalLights.Count == directionalLightcount);
Debug.Assert(m_lightList.lights.Count == areaLightCount + punctualLightcount);
m_punctualLightCount = punctualLightcount;
m_areaLightCount = areaLightCount;
// Redo everything but this time with envLights
int envLightCount = 0;
int probeCount = Math.Min(cullResults.visibleReflectionProbes.Count, k_MaxEnvLightsOnScreen);
sortKeys = new uint[probeCount];
sortCount = 0;
for (int probeIndex = 0, numProbes = cullResults.visibleReflectionProbes.Count; (probeIndex < numProbes) && (sortCount < probeCount); probeIndex++)
{
VisibleReflectionProbe probe = cullResults.visibleReflectionProbes[probeIndex];
HDAdditionalReflectionData additional = probe.probe.GetComponent<HDAdditionalReflectionData>();
// probe.texture can be null when we are adding a reflection probe in the editor
if (probe.texture == null || envLightCount >= k_MaxEnvLightsOnScreen)
continue;
// Work around the culling issues. TODO: fix culling in C++.
if (probe.probe == null || !probe.probe.isActiveAndEnabled)
continue;
// Work around the data issues.
if (probe.localToWorld.determinant == 0)
{
Debug.LogError("Reflection probe " + probe.probe.name + " has an invalid local frame and needs to be fixed.");
continue;
}
LightVolumeType lightVolumeType = LightVolumeType.Box;
if (additional != null && additional.influenceShape == ReflectionInfluenceShape.Sphere)
lightVolumeType = LightVolumeType.Sphere;
++envLightCount;
float boxVolume = 8 * probe.bounds.extents.x * probe.bounds.extents.y * probe.bounds.extents.z;
float logVolume = Mathf.Clamp(256 + Mathf.Log(boxVolume, 1.1f), 0, 8191); // Allow for negative exponents
// 13 bit volume, 3 bit LightVolumeType, 16 bit index
sortKeys[sortCount++] = (uint)logVolume << 19 | (uint)lightVolumeType << 16 | ((uint)probeIndex & 0xFFFF); // Sort by volume
}
// Not necessary yet but call it for future modification with sphere influence volume
CoreUtils.QuickSort(sortKeys, 0, sortCount - 1); // Call our own quicksort instead of Array.Sort(sortKeys, 0, sortCount) so we don't allocate memory (note the SortCount-1 that is different from original call).
for (int sortIndex = 0; sortIndex < sortCount; ++sortIndex)
{
// In 1. we have already classify and sorted the light, we need to use this sorted order here
uint sortKey = sortKeys[sortIndex];
LightVolumeType lightVolumeType = (LightVolumeType)((sortKey >> 16) & 0x3);
int probeIndex = (int)(sortKey & 0xFFFF);
VisibleReflectionProbe probe = cullResults.visibleReflectionProbes[probeIndex];
if (GetEnvLightData(cmd, camera, probe))
{
GetEnvLightVolumeDataAndBound(probe, lightVolumeType, worldToView);
// We make the light position camera-relative as late as possible in order
// to allow the preceding code to work with the absolute world space coordinates.
if (ShaderConfig.s_CameraRelativeRendering != 0)
{
// Caution: 'EnvLightData.positionWS' is camera-relative after this point.
int n = m_lightList.envLights.Count;
EnvLightData envLightData = m_lightList.envLights[n - 1];
envLightData.positionWS -= camPosWS;
m_lightList.envLights[n - 1] = envLightData;
}
}
}
}
m_lightCount = m_lightList.lights.Count + m_lightList.envLights.Count;
Debug.Assert(m_lightList.bounds.Count == m_lightCount);
Debug.Assert(m_lightList.lightVolumes.Count == m_lightCount);
UpdateDataBuffers();
m_maxShadowDistance = shadowSettings.maxShadowDistance;
return m_enableBakeShadowMask;
}
}
void VoxelLightListGeneration(CommandBuffer cmd, Camera camera, Matrix4x4 projscr, Matrix4x4 invProjscr, RenderTargetIdentifier cameraDepthBufferRT)
{
// clear atomic offset index
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_ClearVoxelAtomicKernel, HDShaderIDs.g_LayeredSingleIdxBuffer, s_GlobalLightListAtomic);
cmd.DispatchCompute(buildPerVoxelLightListShader, s_ClearVoxelAtomicKernel, 1, 1, 1);
bool isOrthographic = camera.orthographic;
cmd.SetComputeIntParam(buildPerVoxelLightListShader, HDShaderIDs.g_isOrthographic, isOrthographic ? 1 : 0);
cmd.SetComputeIntParam(buildPerVoxelLightListShader, HDShaderIDs._EnvLightIndexShift, m_lightList.lights.Count);
cmd.SetComputeIntParam(buildPerVoxelLightListShader, HDShaderIDs.g_iNrVisibLights, m_lightCount);
cmd.SetComputeMatrixParam(buildPerVoxelLightListShader, HDShaderIDs.g_mScrProjection, projscr);
cmd.SetComputeMatrixParam(buildPerVoxelLightListShader, HDShaderIDs.g_mInvScrProjection, invProjscr);
cmd.SetComputeIntParam(buildPerVoxelLightListShader, HDShaderIDs.g_iLog2NumClusters, k_Log2NumClusters);
//Vector4 v2_near = invProjscr * new Vector4(0.0f, 0.0f, 0.0f, 1.0f);
//Vector4 v2_far = invProjscr * new Vector4(0.0f, 0.0f, 1.0f, 1.0f);
//float nearPlane2 = -(v2_near.z/v2_near.w);
//float farPlane2 = -(v2_far.z/v2_far.w);
var nearPlane = camera.nearClipPlane;
var farPlane = camera.farClipPlane;
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, HDShaderIDs.g_fNearPlane, nearPlane);
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, HDShaderIDs.g_fFarPlane, farPlane);
const float C = (float)(1 << k_Log2NumClusters);
var geomSeries = (1.0 - Mathf.Pow(k_ClustLogBase, C)) / (1 - k_ClustLogBase); // geometric series: sum_k=0^{C-1} base^k
m_ClustScale = (float)(geomSeries / (farPlane - nearPlane));
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, HDShaderIDs.g_fClustScale, m_ClustScale);
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, HDShaderIDs.g_fClustBase, k_ClustLogBase);
cmd.SetComputeTextureParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_depth_tex, cameraDepthBufferRT);
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_vLayeredLightList, s_PerVoxelLightLists);
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_LayeredOffset, s_PerVoxelOffset);
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_LayeredSingleIdxBuffer, s_GlobalLightListAtomic);
if (m_FrameSettings.lightLoopSettings.enableBigTilePrepass)
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_vBigTileLightList, s_BigTileLightList);
if (k_UseDepthBuffer)
{
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_logBaseBuffer, s_PerTileLogBaseTweak);
}
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_vBoundsBuffer, s_AABBBoundsBuffer);
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs._LightVolumeData, s_LightVolumeDataBuffer);
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, HDShaderIDs.g_data, s_ConvexBoundsBuffer);
var numTilesX = GetNumTileClusteredX(camera);
var numTilesY = GetNumTileClusteredY(camera);
cmd.DispatchCompute(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, numTilesX, numTilesY, 1);
}
public void BuildGPULightListsCommon(Camera camera, CommandBuffer cmd, RenderTargetIdentifier cameraDepthBufferRT, RenderTargetIdentifier stencilTextureRT, bool skyEnabled)
{
cmd.BeginSample("Build Light List");
var w = camera.pixelWidth;
var h = camera.pixelHeight;
var numBigTilesX = (w + 63) / 64;
var numBigTilesY = (h + 63) / 64;
// camera to screen matrix (and it's inverse)
var proj = CameraProjection(camera);
var temp = new Matrix4x4();
temp.SetRow(0, new Vector4(0.5f * w, 0.0f, 0.0f, 0.5f * w));
temp.SetRow(1, new Vector4(0.0f, 0.5f * h, 0.0f, 0.5f * h));
temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f));
temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
var projscr = temp * proj;
var invProjscr = projscr.inverse;
bool isOrthographic = camera.orthographic;
// generate screen-space AABBs (used for both fptl and clustered).
if (m_lightCount != 0)
{
temp.SetRow(0, new Vector4(1.0f, 0.0f, 0.0f, 0.0f));
temp.SetRow(1, new Vector4(0.0f, 1.0f, 0.0f, 0.0f));
temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f));
temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
var projh = temp * proj;
var invProjh = projh.inverse;
cmd.SetComputeIntParam(buildScreenAABBShader, HDShaderIDs.g_isOrthographic, isOrthographic ? 1 : 0);
cmd.SetComputeIntParam(buildScreenAABBShader, HDShaderIDs.g_iNrVisibLights, m_lightCount);
cmd.SetComputeBufferParam(buildScreenAABBShader, s_GenAABBKernel, HDShaderIDs.g_data, s_ConvexBoundsBuffer);
cmd.SetComputeMatrixParam(buildScreenAABBShader, HDShaderIDs.g_mProjection, projh);
cmd.SetComputeMatrixParam(buildScreenAABBShader, HDShaderIDs.g_mInvProjection, invProjh);
cmd.SetComputeBufferParam(buildScreenAABBShader, s_GenAABBKernel, HDShaderIDs.g_vBoundsBuffer, s_AABBBoundsBuffer);
cmd.DispatchCompute(buildScreenAABBShader, s_GenAABBKernel, (m_lightCount + 7) / 8, 1, 1);
}
// enable coarse 2D pass on 64x64 tiles (used for both fptl and clustered).
if (m_FrameSettings.lightLoopSettings.enableBigTilePrepass)
{
cmd.SetComputeIntParam(buildPerBigTileLightListShader, HDShaderIDs.g_isOrthographic, isOrthographic ? 1 : 0);
cmd.SetComputeIntParams(buildPerBigTileLightListShader, HDShaderIDs.g_viDimensions, w, h);
cmd.SetComputeIntParam(buildPerBigTileLightListShader, HDShaderIDs._EnvLightIndexShift, m_lightList.lights.Count);
cmd.SetComputeIntParam(buildPerBigTileLightListShader, HDShaderIDs.g_iNrVisibLights, m_lightCount);
cmd.SetComputeMatrixParam(buildPerBigTileLightListShader, HDShaderIDs.g_mScrProjection, projscr);
cmd.SetComputeMatrixParam(buildPerBigTileLightListShader, HDShaderIDs.g_mInvScrProjection, invProjscr);
cmd.SetComputeFloatParam(buildPerBigTileLightListShader, HDShaderIDs.g_fNearPlane, camera.nearClipPlane);
cmd.SetComputeFloatParam(buildPerBigTileLightListShader, HDShaderIDs.g_fFarPlane, camera.farClipPlane);
cmd.SetComputeBufferParam(buildPerBigTileLightListShader, s_GenListPerBigTileKernel, HDShaderIDs.g_vLightList, s_BigTileLightList);
cmd.SetComputeBufferParam(buildPerBigTileLightListShader, s_GenListPerBigTileKernel, HDShaderIDs.g_vBoundsBuffer, s_AABBBoundsBuffer);
cmd.SetComputeBufferParam(buildPerBigTileLightListShader, s_GenListPerBigTileKernel, HDShaderIDs._LightVolumeData, s_LightVolumeDataBuffer);
cmd.SetComputeBufferParam(buildPerBigTileLightListShader, s_GenListPerBigTileKernel, HDShaderIDs.g_data, s_ConvexBoundsBuffer);
cmd.DispatchCompute(buildPerBigTileLightListShader, s_GenListPerBigTileKernel, numBigTilesX, numBigTilesY, 1);
}
var numTilesX = GetNumTileFtplX(camera);
var numTilesY = GetNumTileFtplY(camera);
var numTiles = numTilesX * numTilesY;
bool enableFeatureVariants = GetFeatureVariantsEnabled();
// optimized for opaques only
if (m_FrameSettings.lightLoopSettings.isFptlEnabled)
{
cmd.SetComputeIntParam(buildPerTileLightListShader, HDShaderIDs.g_isOrthographic, isOrthographic ? 1 : 0);
cmd.SetComputeIntParams(buildPerTileLightListShader, HDShaderIDs.g_viDimensions, w, h);
cmd.SetComputeIntParam(buildPerTileLightListShader, HDShaderIDs._EnvLightIndexShift, m_lightList.lights.Count);
cmd.SetComputeIntParam(buildPerTileLightListShader, HDShaderIDs.g_iNrVisibLights, m_lightCount);
cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, HDShaderIDs.g_vBoundsBuffer, s_AABBBoundsBuffer);
cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, HDShaderIDs._LightVolumeData, s_LightVolumeDataBuffer);
cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, HDShaderIDs.g_data, s_ConvexBoundsBuffer);
cmd.SetComputeMatrixParam(buildPerTileLightListShader, HDShaderIDs.g_mScrProjection, projscr);
cmd.SetComputeMatrixParam(buildPerTileLightListShader, HDShaderIDs.g_mInvScrProjection, invProjscr);
cmd.SetComputeTextureParam(buildPerTileLightListShader, s_GenListPerTileKernel, HDShaderIDs.g_depth_tex, cameraDepthBufferRT);
cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, HDShaderIDs.g_vLightList, s_LightList);
if (m_FrameSettings.lightLoopSettings.enableBigTilePrepass)
cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, HDShaderIDs.g_vBigTileLightList, s_BigTileLightList);
if (enableFeatureVariants)
{
uint baseFeatureFlags = 0;
if (m_lightList.directionalLights.Count > 0)
{
baseFeatureFlags |= (uint)LightFeatureFlags.Directional;
}
if (skyEnabled)
{
baseFeatureFlags |= (uint)LightFeatureFlags.Sky;
}
if (!m_FrameSettings.lightLoopSettings.enableComputeMaterialVariants)
{
baseFeatureFlags |= LightDefinitions.s_MaterialFeatureMaskFlags;
}
cmd.SetComputeIntParam(buildPerTileLightListShader, HDShaderIDs.g_BaseFeatureFlags, (int)baseFeatureFlags);
cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, HDShaderIDs.g_TileFeatureFlags, s_TileFeatureFlags);
}
cmd.DispatchCompute(buildPerTileLightListShader, s_GenListPerTileKernel, numTilesX, numTilesY, 1);
}
// Cluster
VoxelLightListGeneration(cmd, camera, projscr, invProjscr, cameraDepthBufferRT);
if (enableFeatureVariants)
{
// material classification
if (m_FrameSettings.lightLoopSettings.enableComputeMaterialVariants)
{
int buildMaterialFlagsKernel = s_BuildMaterialFlagsOrKernel;
uint baseFeatureFlags = 0;
if (!m_FrameSettings.lightLoopSettings.enableComputeLightVariants)
{
buildMaterialFlagsKernel = s_BuildMaterialFlagsWriteKernel;
baseFeatureFlags |= LightDefinitions.s_LightFeatureMaskFlags;
}
cmd.SetComputeIntParam(buildMaterialFlagsShader, HDShaderIDs.g_BaseFeatureFlags, (int)baseFeatureFlags);
cmd.SetComputeIntParams(buildMaterialFlagsShader, HDShaderIDs.g_viDimensions, w, h);
cmd.SetComputeBufferParam(buildMaterialFlagsShader, buildMaterialFlagsKernel, HDShaderIDs.g_TileFeatureFlags, s_TileFeatureFlags);
cmd.SetComputeTextureParam(buildMaterialFlagsShader, buildMaterialFlagsKernel, HDShaderIDs._StencilTexture, stencilTextureRT);
cmd.DispatchCompute(buildMaterialFlagsShader, buildMaterialFlagsKernel, numTilesX, numTilesY, 1);
}
// clear dispatch indirect buffer
cmd.SetComputeBufferParam(clearDispatchIndirectShader, s_ClearDispatchIndirectKernel, HDShaderIDs.g_DispatchIndirectBuffer, s_DispatchIndirectBuffer);
cmd.DispatchCompute(clearDispatchIndirectShader, s_ClearDispatchIndirectKernel, 1, 1, 1);
// add tiles to indirect buffer
cmd.SetComputeBufferParam(buildDispatchIndirectShader, s_BuildDispatchIndirectKernel, HDShaderIDs.g_DispatchIndirectBuffer, s_DispatchIndirectBuffer);
cmd.SetComputeBufferParam(buildDispatchIndirectShader, s_BuildDispatchIndirectKernel, HDShaderIDs.g_TileList, s_TileList);
cmd.SetComputeBufferParam(buildDispatchIndirectShader, s_BuildDispatchIndirectKernel, HDShaderIDs.g_TileFeatureFlags, s_TileFeatureFlags);
cmd.SetComputeIntParam(buildDispatchIndirectShader, HDShaderIDs.g_NumTiles, numTiles);
cmd.SetComputeIntParam(buildDispatchIndirectShader, HDShaderIDs.g_NumTilesX, numTilesX);
cmd.DispatchCompute(buildDispatchIndirectShader, s_BuildDispatchIndirectKernel, (numTiles + 63) / 64, 1, 1);
}
cmd.EndSample("Build Light List");
}
public void BuildGPULightLists(Camera camera, CommandBuffer cmd, RenderTargetIdentifier cameraDepthBufferRT, RenderTargetIdentifier stencilTextureRT, bool skyEnabled)
{
cmd.SetRenderTarget(BuiltinRenderTextureType.None);
BuildGPULightListsCommon(camera, cmd, cameraDepthBufferRT, stencilTextureRT, skyEnabled);
PushGlobalParams(camera, cmd);
}
public GPUFence BuildGPULightListsAsyncBegin(Camera camera, ScriptableRenderContext renderContext, RenderTargetIdentifier cameraDepthBufferRT, RenderTargetIdentifier stencilTextureRT, GPUFence startFence, bool skyEnabled)
{
var cmd = CommandBufferPool.Get("Build light list");
cmd.WaitOnGPUFence(startFence);
BuildGPULightListsCommon(camera, cmd, cameraDepthBufferRT, stencilTextureRT, skyEnabled);
GPUFence completeFence = cmd.CreateGPUFence();
renderContext.ExecuteCommandBufferAsync(cmd, ComputeQueueType.Background);
CommandBufferPool.Release(cmd);
return completeFence;
}
public void BuildGPULightListAsyncEnd(Camera camera, CommandBuffer cmd, GPUFence doneFence)
{
cmd.WaitOnGPUFence(doneFence);
PushGlobalParams(camera, cmd);
}
private void UpdateDataBuffers()
{
s_DirectionalLightDatas.SetData(m_lightList.directionalLights);
s_LightDatas.SetData(m_lightList.lights);
s_EnvLightDatas.SetData(m_lightList.envLights);
s_shadowDatas.SetData(m_lightList.shadows);
// These two buffers have been set in Rebuild()
s_ConvexBoundsBuffer.SetData(m_lightList.bounds);
s_LightVolumeDataBuffer.SetData(m_lightList.lightVolumes);
}
HDAdditionalReflectionData GetHDAdditionalReflectionData(VisibleReflectionProbe probe)
{
var add = probe.probe.GetComponent<HDAdditionalReflectionData>();
if (add == null)
{
add = defaultHDAdditionalReflectionData;
add.blendDistancePositive = Vector3.one * probe.blendDistance;
add.blendDistanceNegative = add.blendDistancePositive;
add.influenceShape = ReflectionInfluenceShape.Box;
}
return add;
}
HDAdditionalLightData GetHDAdditionalLightData(VisibleLight light)
{
var add = light.light.GetComponent<HDAdditionalLightData>();
if (add == null)
{
add = defaultHDAdditionalLightData;
}
return add;
}
void PushGlobalParams(Camera camera, CommandBuffer cmd)
{
using (new ProfilingSample(cmd, "Push Global Parameters", HDRenderPipeline.GetSampler(CustomSamplerId.TPPushGlobalParameters)))
{
// Shadows
m_ShadowMgr.SyncData();
m_ShadowMgr.BindResources(cmd, null, 0);
cmd.SetGlobalTexture(HDShaderIDs._CookieTextures, m_CookieTexArray.GetTexCache());
cmd.SetGlobalTexture(HDShaderIDs._CookieCubeTextures, m_CubeCookieTexArray.GetTexCache());
cmd.SetGlobalTexture(HDShaderIDs._EnvTextures, m_ReflectionProbeCache.GetTexCache());
cmd.SetGlobalBuffer(HDShaderIDs._DirectionalLightDatas, s_DirectionalLightDatas);
cmd.SetGlobalInt(HDShaderIDs._DirectionalLightCount, m_lightList.directionalLights.Count);
cmd.SetGlobalBuffer(HDShaderIDs._LightDatas, s_LightDatas);
cmd.SetGlobalInt(HDShaderIDs._PunctualLightCount, m_punctualLightCount);
cmd.SetGlobalInt(HDShaderIDs._AreaLightCount, m_areaLightCount);
cmd.SetGlobalBuffer(HDShaderIDs._EnvLightDatas, s_EnvLightDatas);
cmd.SetGlobalInt(HDShaderIDs._EnvLightCount, m_lightList.envLights.Count);
cmd.SetGlobalBuffer(HDShaderIDs._ShadowDatas, s_shadowDatas);
cmd.SetGlobalVectorArray(HDShaderIDs._DirShadowSplitSpheres, m_lightList.directionalShadowSplitSphereSqr);
cmd.SetGlobalInt(HDShaderIDs._NumTileFtplX, GetNumTileFtplX(camera));
cmd.SetGlobalInt(HDShaderIDs._NumTileFtplY, GetNumTileFtplY(camera));
cmd.SetGlobalInt(HDShaderIDs._NumTileClusteredX, GetNumTileClusteredX(camera));
cmd.SetGlobalInt(HDShaderIDs._NumTileClusteredY, GetNumTileClusteredY(camera));
if (m_FrameSettings.lightLoopSettings.enableBigTilePrepass)
cmd.SetGlobalBuffer(HDShaderIDs.g_vBigTileLightList, s_BigTileLightList);
// Cluster
{
cmd.SetGlobalFloat(HDShaderIDs.g_fClustScale, m_ClustScale);
cmd.SetGlobalFloat(HDShaderIDs.g_fClustBase, k_ClustLogBase);
cmd.SetGlobalFloat(HDShaderIDs.g_fNearPlane, camera.nearClipPlane);
cmd.SetGlobalFloat(HDShaderIDs.g_fFarPlane, camera.farClipPlane);
cmd.SetGlobalInt(HDShaderIDs.g_iLog2NumClusters, k_Log2NumClusters);
cmd.SetGlobalInt(HDShaderIDs.g_isLogBaseBufferEnabled, k_UseDepthBuffer ? 1 : 0);
cmd.SetGlobalBuffer(HDShaderIDs.g_vLayeredOffsetsBuffer, s_PerVoxelOffset);
if (k_UseDepthBuffer)
{
cmd.SetGlobalBuffer(HDShaderIDs.g_logBaseBuffer, s_PerTileLogBaseTweak);
}
}
}
}
#if UNITY_EDITOR
private Vector2 m_mousePosition = Vector2.zero;
private void OnSceneGUI(UnityEditor.SceneView sceneview)
{
m_mousePosition = Event.current.mousePosition;
}
#endif
public void RenderShadows(ScriptableRenderContext renderContext, CommandBuffer cmd, CullResults cullResults)
{
// kick off the shadow jobs here
m_ShadowMgr.RenderShadows(m_FrameId, renderContext, cmd, cullResults, cullResults.visibleLights);
}
public struct LightingPassOptions
{
public bool outputSplitLighting;
}
public void RenderDeferredDirectionalShadow(HDCamera hdCamera, RenderTargetIdentifier deferredShadowRT, RenderTargetIdentifier depthTexture, CommandBuffer cmd)
{
if (m_CurrentSunLight == null)
return;
using (new ProfilingSample(cmd, "Deferred Directional Shadow", HDRenderPipeline.GetSampler(CustomSamplerId.TPDeferredDirectionalShadow)))
{
m_ShadowMgr.BindResources(cmd, deferredDirectionalShadowComputeShader, s_deferredDirectionalShadowKernel);
cmd.SetComputeFloatParam(deferredDirectionalShadowComputeShader, HDShaderIDs._DirectionalShadowIndex, (float)m_CurrentSunLightShadowIndex);
cmd.SetComputeTextureParam(deferredDirectionalShadowComputeShader, s_deferredDirectionalShadowKernel, HDShaderIDs._DeferredShadowTextureUAV, deferredShadowRT);
cmd.SetComputeTextureParam(deferredDirectionalShadowComputeShader, s_deferredDirectionalShadowKernel, HDShaderIDs._MainDepthTexture, depthTexture);
int deferredShadowTileSize = 16; // Must match DeferreDirectionalShadow.compute
int numTilesX = (hdCamera.camera.pixelWidth + (deferredShadowTileSize - 1)) / deferredShadowTileSize;
int numTilesY = (hdCamera.camera.pixelHeight + (deferredShadowTileSize - 1)) / deferredShadowTileSize;
// TODO: Update for stereo
cmd.DispatchCompute(deferredDirectionalShadowComputeShader, s_deferredDirectionalShadowKernel, numTilesX, numTilesY, 1);
}
}
public void RenderDeferredLighting( HDCamera hdCamera, CommandBuffer cmd, DebugDisplaySettings debugDisplaySettings,
RenderTargetIdentifier[] colorBuffers, RenderTargetIdentifier depthStencilBuffer, RenderTargetIdentifier depthTexture,
LightingPassOptions options)
{
cmd.SetGlobalBuffer(HDShaderIDs.g_vLightListGlobal, s_LightList);
if (m_FrameSettings.lightLoopSettings.enableTileAndCluster && m_FrameSettings.lightLoopSettings.enableComputeLightEvaluation && options.outputSplitLighting)
{
// The CS is always in the MRT mode. Do not execute the same shader twice.
return;
}
// Predeclared to reduce GC pressure
string tilePassName = "TilePass - Deferred Lighting Pass";
string tilePassMRTName = "TilePass - Deferred Lighting Pass MRT";
string singlePassName = "SinglePass - Deferred Lighting Pass";
string SinglePassMRTName = "SinglePass - Deferred Lighting Pass MRT";
string sLabel = m_FrameSettings.lightLoopSettings.enableTileAndCluster ?
(options.outputSplitLighting ? tilePassMRTName : tilePassName) :
(options.outputSplitLighting ? SinglePassMRTName : singlePassName);
using (new ProfilingSample(cmd, sLabel, HDRenderPipeline.GetSampler(CustomSamplerId.TPRenderDeferredLighting)))
{
var camera = hdCamera.camera;
// Compute path
if (m_FrameSettings.lightLoopSettings.enableTileAndCluster && m_FrameSettings.lightLoopSettings.enableComputeLightEvaluation)
{
int w = camera.pixelWidth;
int h = camera.pixelHeight;
int numTilesX = (w + 15) / 16;
int numTilesY = (h + 15) / 16;
int numTiles = numTilesX * numTilesY;
bool enableFeatureVariants = GetFeatureVariantsEnabled() && !debugDisplaySettings.IsDebugDisplayEnabled();
int numVariants = 1;
if (enableFeatureVariants)
numVariants = LightDefinitions.s_NumFeatureVariants;
for (int variant = 0; variant < numVariants; variant++)
{
int kernel;
if (enableFeatureVariants)
{
if (m_enableBakeShadowMask)
kernel = s_shadeOpaqueIndirectShadowMaskFptlKernels[variant];
else
kernel = s_shadeOpaqueIndirectFptlKernels[variant];
}
else
{
if (m_enableBakeShadowMask)
{
kernel = debugDisplaySettings.IsDebugDisplayEnabled() ? s_shadeOpaqueDirectShadowMaskFptlDebugDisplayKernel : s_shadeOpaqueDirectShadowMaskFptlKernel;
}
else
{
kernel = debugDisplaySettings.IsDebugDisplayEnabled() ? s_shadeOpaqueDirectFptlDebugDisplayKernel : s_shadeOpaqueDirectFptlKernel;
}
}
cmd.SetComputeTextureParam(deferredComputeShader, kernel, HDShaderIDs._MainDepthTexture, depthTexture);
// TODO: Should remove this setting but can't remove it else get error: Property (_AmbientOcclusionTexture) at kernel index (32) is not set. Check why
cmd.SetComputeTextureParam(deferredComputeShader, kernel, HDShaderIDs._AmbientOcclusionTexture, HDShaderIDs._AmbientOcclusionTexture);
// TODO: Is it possible to setup this outside the loop ? Can figure out how, get this: Property (specularLightingUAV) at kernel index (21) is not set
cmd.SetComputeTextureParam(deferredComputeShader, kernel, HDShaderIDs.specularLightingUAV, colorBuffers[0]);
cmd.SetComputeTextureParam(deferredComputeShader, kernel, HDShaderIDs.diffuseLightingUAV, colorBuffers[1]);
// always do deferred lighting in blocks of 16x16 (not same as tiled light size)
if (enableFeatureVariants)
{
cmd.SetComputeIntParam(deferredComputeShader, HDShaderIDs.g_TileListOffset, variant * numTiles);
cmd.SetComputeBufferParam(deferredComputeShader, kernel, HDShaderIDs.g_TileList, s_TileList);
cmd.DispatchCompute(deferredComputeShader, kernel, s_DispatchIndirectBuffer, (uint)variant * 3 * sizeof(uint));
}
else
{
cmd.DispatchCompute(deferredComputeShader, kernel, numTilesX, numTilesY, 1);
}
}
}
else // Pixel shader evaluation
{
int index = GetDeferredLightingMaterialIndex( options.outputSplitLighting ? 1 : 0,
m_FrameSettings.lightLoopSettings.enableTileAndCluster ? 1 : 0,
m_enableBakeShadowMask ? 1 : 0,
debugDisplaySettings.IsDebugDisplayEnabled() ? 1 : 0);
Material currentLightingMaterial = m_deferredLightingMaterial[index];
if (options.outputSplitLighting)
{
CoreUtils.DrawFullScreen(cmd, currentLightingMaterial, colorBuffers, depthStencilBuffer);
}
else
{
// If SSS is disable, do lighting for both split lighting and no split lighting
// This is for debug purpose, so fine to use immediate material mode here to modify render state
if (!m_FrameSettings.enableSSSAndTransmission)
{
currentLightingMaterial.SetInt(HDShaderIDs._StencilRef, (int)StencilLightingUsage.NoLighting);
currentLightingMaterial.SetInt(HDShaderIDs._StencilCmp, (int)CompareFunction.NotEqual);
}
else
{
currentLightingMaterial.SetInt(HDShaderIDs._StencilRef, (int)StencilLightingUsage.RegularLighting);
currentLightingMaterial.SetInt(HDShaderIDs._StencilCmp, (int)CompareFunction.Equal);
}
CoreUtils.DrawFullScreen(cmd, currentLightingMaterial, colorBuffers[0], depthStencilBuffer);
}
}
} // End profiling
}
public void RenderForward(Camera camera, CommandBuffer cmd, bool renderOpaque)
{
// Note: SHADOWS_SHADOWMASK keyword is enabled in HDRenderPipeline.cs ConfigureForShadowMask
// Note: if we use render opaque with deferred tiling we need to render a opaque depth pass for these opaque objects
if (!m_FrameSettings.lightLoopSettings.enableTileAndCluster)
{
using (new ProfilingSample(cmd, "Forward pass", HDRenderPipeline.GetSampler(CustomSamplerId.TPForwardPass)))
{
cmd.EnableShaderKeyword("LIGHTLOOP_SINGLE_PASS");
cmd.DisableShaderKeyword("LIGHTLOOP_TILE_PASS");
}
}
else
{
// Only opaques can use FPTL, transparent must use clustered!
bool useFptl = renderOpaque && m_FrameSettings.lightLoopSettings.enableFptlForForwardOpaque;
using (new ProfilingSample(cmd, useFptl ? "Forward Tiled pass" : "Forward Clustered pass", HDRenderPipeline.GetSampler(CustomSamplerId.TPForwardTiledClusterpass)))
{
// say that we want to use tile of single loop
cmd.EnableShaderKeyword("LIGHTLOOP_TILE_PASS");
cmd.DisableShaderKeyword("LIGHTLOOP_SINGLE_PASS");
CoreUtils.SetKeyword(cmd, "USE_FPTL_LIGHTLIST", useFptl);
CoreUtils.SetKeyword(cmd, "USE_CLUSTERED_LIGHTLIST", !useFptl);
cmd.SetGlobalBuffer(HDShaderIDs.g_vLightListGlobal, useFptl ? s_LightList : s_PerVoxelLightLists);
}
}
}
public void RenderDebugOverlay(HDCamera hdCamera, CommandBuffer cmd, DebugDisplaySettings debugDisplaySettings, ref float x, ref float y, float overlaySize, float width)
{
LightingDebugSettings lightingDebug = debugDisplaySettings.lightingDebugSettings;
using (new ProfilingSample(cmd, "Tiled/cluster Lighting Debug", HDRenderPipeline.GetSampler(CustomSamplerId.TPTiledLightingDebug)))
{
if (lightingDebug.tileClusterDebug != LightLoop.TileClusterDebug.None)
{
int w = hdCamera.camera.pixelWidth;
int h = hdCamera.camera.pixelHeight;
int numTilesX = (w + 15) / 16;
int numTilesY = (h + 15) / 16;
int numTiles = numTilesX * numTilesY;
Vector2 mousePixelCoord = Input.mousePosition;
#if UNITY_EDITOR
if (!UnityEditor.EditorApplication.isPlayingOrWillChangePlaymode)
{
mousePixelCoord = m_mousePosition;
mousePixelCoord.y = (hdCamera.screenSize.y - 1.0f) - mousePixelCoord.y;
}
#endif
// Debug tiles
if (lightingDebug.tileClusterDebug == LightLoop.TileClusterDebug.FeatureVariants)
{
if (GetFeatureVariantsEnabled())
{
// featureVariants
m_DebugViewTilesMaterial.SetInt(HDShaderIDs._NumTiles, numTiles);
m_DebugViewTilesMaterial.SetInt(HDShaderIDs._ViewTilesFlags, (int)lightingDebug.tileClusterDebugByCategory);
m_DebugViewTilesMaterial.SetVector(HDShaderIDs._MousePixelCoord, mousePixelCoord);
m_DebugViewTilesMaterial.SetBuffer(HDShaderIDs.g_TileList, s_TileList);
m_DebugViewTilesMaterial.SetBuffer(HDShaderIDs.g_DispatchIndirectBuffer, s_DispatchIndirectBuffer);
m_DebugViewTilesMaterial.EnableKeyword("USE_FPTL_LIGHTLIST");
m_DebugViewTilesMaterial.DisableKeyword("USE_CLUSTERED_LIGHTLIST");
m_DebugViewTilesMaterial.DisableKeyword("SHOW_LIGHT_CATEGORIES");
m_DebugViewTilesMaterial.EnableKeyword("SHOW_FEATURE_VARIANTS");
cmd.DrawProcedural(Matrix4x4.identity, m_DebugViewTilesMaterial, 0, MeshTopology.Triangles, numTiles * 6);
}
}
else // tile or cluster
{
bool bUseClustered = lightingDebug.tileClusterDebug == LightLoop.TileClusterDebug.Cluster;
// lightCategories
m_DebugViewTilesMaterial.SetInt(HDShaderIDs._ViewTilesFlags, (int)lightingDebug.tileClusterDebugByCategory);
m_DebugViewTilesMaterial.SetVector(HDShaderIDs._MousePixelCoord, mousePixelCoord);
m_DebugViewTilesMaterial.SetBuffer(HDShaderIDs.g_vLightListGlobal, bUseClustered ? s_PerVoxelLightLists : s_LightList);
m_DebugViewTilesMaterial.EnableKeyword(bUseClustered ? "USE_CLUSTERED_LIGHTLIST" : "USE_FPTL_LIGHTLIST");
m_DebugViewTilesMaterial.DisableKeyword(!bUseClustered ? "USE_CLUSTERED_LIGHTLIST" : "USE_FPTL_LIGHTLIST");
m_DebugViewTilesMaterial.EnableKeyword("SHOW_LIGHT_CATEGORIES");
m_DebugViewTilesMaterial.DisableKeyword("SHOW_FEATURE_VARIANTS");
CoreUtils.DrawFullScreen(cmd, m_DebugViewTilesMaterial, 0);
}
}
}
using (new ProfilingSample(cmd, "Display Shadows", HDRenderPipeline.GetSampler(CustomSamplerId.TPDisplayShadows)))
{
if (lightingDebug.shadowDebugMode == ShadowMapDebugMode.VisualizeShadowMap)
{
int index = (int)lightingDebug.shadowMapIndex;
#if UNITY_EDITOR
if(lightingDebug.shadowDebugUseSelection)
{
index = -1;
if (UnityEditor.Selection.activeObject is GameObject)
{
GameObject go = UnityEditor.Selection.activeObject as GameObject;
Light light = go.GetComponent<Light>();
if (light != null)
{
index = m_ShadowMgr.GetShadowRequestIndex(light);
}
}
}
#endif
if(index != -1)
{
uint faceCount = m_ShadowMgr.GetShadowRequestFaceCount((uint)index);
for (uint i = 0; i < faceCount; ++i)
{
m_ShadowMgr.DisplayShadow(cmd, index, i, x, y, overlaySize, overlaySize, lightingDebug.shadowMinValue, lightingDebug.shadowMaxValue);
HDUtils.NextOverlayCoord(ref x, ref y, overlaySize, overlaySize, hdCamera.camera.pixelWidth);
}
}
}
else if (lightingDebug.shadowDebugMode == ShadowMapDebugMode.VisualizeAtlas)
{
m_ShadowMgr.DisplayShadowMap(cmd, lightingDebug.shadowAtlasIndex, 0, x, y, overlaySize, overlaySize, lightingDebug.shadowMinValue, lightingDebug.shadowMaxValue);
HDUtils.NextOverlayCoord(ref x, ref y, overlaySize, overlaySize, hdCamera.camera.pixelWidth);
}
}
}
}
}