您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
296 行
9.5 KiB
296 行
9.5 KiB
// GENERATED BY SHADER GRAPH
|
|
// Question for shader graph: how to handle dynamic parameter data like matData0 that can change name
|
|
|
|
// No guard header!
|
|
|
|
#define UNITY_MATERIAL_DISNEYGXX // Need to be define before including Material.hlsl
|
|
#include "Lighting/Lighting.hlsl" // This include Material.hlsl
|
|
#include "ShaderVariables.hlsl"
|
|
|
|
// This files is generated by the ShaderGraph or written by hand
|
|
|
|
// Note for ShaderGraph:
|
|
// ShaderGraph should generate the vertex shader output to add the variable that may be required
|
|
// For example if we require view vector in shader graph, the output must contain positionWS and we calcualte the view vector with it.
|
|
// Still some input are mandatory depends on the type of loop. positionWS is mandatory in this current framework. So the ShaderGraph should always generate it.
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// variable declaration
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
// Set of users variables
|
|
float4 _BaseColor;
|
|
sampler2D _BaseColorMap;
|
|
|
|
float _Mettalic;
|
|
float _Smoothness;
|
|
sampler2D _MaskMap;
|
|
sampler2D _SpecularOcclusionMap;
|
|
|
|
sampler2D _NormalMap;
|
|
sampler2D _Heightmap;
|
|
float _HeightScale;
|
|
float _HeightBias;
|
|
|
|
sampler2D _DiffuseLightingMap;
|
|
float4 _EmissiveColor;
|
|
sampler2D _EmissiveColorMap;
|
|
float _EmissiveIntensity;
|
|
|
|
float _SubSurfaceRadius;
|
|
sampler2D _SubSurfaceRadiusMap;
|
|
// float _Thickness;
|
|
// sampler2D _ThicknessMap;
|
|
|
|
// float _CoatCoverage;
|
|
// sampler2D _CoatCoverageMap;
|
|
|
|
// float _CoatRoughness;
|
|
// sampler2D _CoatRoughnessMap;
|
|
|
|
float _Cutoff;
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Lighting architecture
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
// TODO: Check if we will have different Varyings based on different pass, not sure about that...
|
|
|
|
// Forward
|
|
struct Attributes
|
|
{
|
|
float3 positionOS : POSITION;
|
|
float3 normalOS : NORMAL;
|
|
float2 uv0 : TEXCOORD0;
|
|
float4 tangentOS : TANGENT;
|
|
};
|
|
|
|
struct Varyings
|
|
{
|
|
float4 positionHS;
|
|
float3 positionWS;
|
|
float2 texCoord0;
|
|
float4 tangentToWorld[3]; // [3x3:tangentToWorld | 1x3:viewDirForParallax]
|
|
|
|
/*
|
|
#ifdef SHADER_STAGE_FRAGMENT
|
|
#if defined(_DOUBLESIDED_LIGHTING_FLIP) || defined(_DOUBLESIDED_LIGHTING_MIRROR)
|
|
FRONT_FACE_TYPE cullFace;
|
|
#endif
|
|
#endif
|
|
*/
|
|
};
|
|
|
|
struct PackedVaryings
|
|
{
|
|
float4 positionHS : SV_Position;
|
|
float4 interpolators[5] : TEXCOORD0;
|
|
|
|
/*
|
|
#ifdef SHADER_STAGE_FRAGMENT
|
|
#if defined(_DOUBLESIDED_LIGHTING_FLIP) || defined(_DOUBLESIDED_LIGHTING_MIRROR)
|
|
FRONT_FACE_TYPE cullFace : FRONT_FACE_SEMATIC;
|
|
#endif
|
|
#endif
|
|
*/
|
|
};
|
|
|
|
// Function to pack data to use as few interpolator as possible, the ShaderGraph should generate these functions
|
|
PackedVaryings PackVaryings(Varyings input)
|
|
{
|
|
PackedVaryings output;
|
|
output.positionHS = input.positionHS;
|
|
output.interpolators[0].xyz = input.positionWS.xyz;
|
|
output.interpolators[0].w = input.texCoord0.x;
|
|
output.interpolators[1] = input.tangentToWorld[0];
|
|
output.interpolators[2] = input.tangentToWorld[1];
|
|
output.interpolators[3] = input.tangentToWorld[2];
|
|
output.interpolators[4].x = input.texCoord0.y;
|
|
output.interpolators[4].yzw = float3(0.0, 0.0, 0.0);
|
|
|
|
return output;
|
|
}
|
|
|
|
Varyings UnpackVaryings(PackedVaryings input)
|
|
{
|
|
Varyings output;
|
|
output.positionHS = input.positionHS;
|
|
output.positionWS.xyz = input.interpolators[0].xyz;
|
|
output.texCoord0.x = input.interpolators[0].w;
|
|
output.texCoord0.y = input.interpolators[4].x;
|
|
output.tangentToWorld[0] = input.interpolators[1];
|
|
output.tangentToWorld[1] = input.interpolators[2];
|
|
output.tangentToWorld[2] = input.interpolators[3];
|
|
|
|
/*
|
|
#if defined(_DOUBLESIDED_LIGHTING_FLIP) || defined(_DOUBLESIDED_LIGHTING_MIRROR)
|
|
output.cullFace = input.cullFace;
|
|
#endif
|
|
*/
|
|
|
|
return output;
|
|
}
|
|
|
|
// TODO: Here we will also have all the vertex deformation (GPU skinning, vertex animation, morph target...) or we will need to generate a compute shaders instead (better! but require work to deal with unpacking like fp16)
|
|
PackedVaryings VertDefault(Attributes input)
|
|
{
|
|
Varyings output;
|
|
|
|
output.positionWS = TransformObjectToWorld(input.positionOS);
|
|
// TODO deal with camera center rendering and instancing (This is the reason why we always perform tow steps transform to clip space + instancing matrix)
|
|
output.positionHS = TransformWorldToHClip(output.positionWS);
|
|
|
|
float3 normalWS = TransformObjectToWorldNormal(input.normalOS);
|
|
|
|
output.texCoord0 = input.uv0;
|
|
|
|
float4 tangentWS = float4(TransformObjectToWorldDir(input.tangentOS.xyz), input.tangentOS.w);
|
|
|
|
float3x3 tangentToWorld = CreateTangentToWorld(normalWS, tangentWS.xyz, tangentWS.w);
|
|
output.tangentToWorld[0].xyz = tangentToWorld[0];
|
|
output.tangentToWorld[1].xyz = tangentToWorld[1];
|
|
output.tangentToWorld[2].xyz = tangentToWorld[2];
|
|
|
|
output.tangentToWorld[0].w = 0;
|
|
output.tangentToWorld[1].w = 0;
|
|
output.tangentToWorld[2].w = 0;
|
|
|
|
/*
|
|
#if defined(_DOUBLESIDED_LIGHTING_FLIP) || defined(_DOUBLESIDED_LIGHTING_MIRROR)
|
|
output.cullFace = FRONT_FACE_TYPE(0); // To avoid a warning
|
|
#endif
|
|
*/
|
|
|
|
return PackVaryings(output);
|
|
}
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// Fill SurfaceData/Lighting data function
|
|
//-------------------------------------------------------------------------------------
|
|
|
|
float3 TransformTangentToWorld(float3 normalTS, float4 tangentToWorld[3])
|
|
{
|
|
// TODO check: do we need to normalize ?
|
|
return normalize(mul(normalTS, float3x3(tangentToWorld[0].xyz, tangentToWorld[1].xyz, tangentToWorld[2].xyz)));
|
|
}
|
|
|
|
SurfaceData GetSurfaceData(Varyings input)
|
|
{
|
|
// to manage the mettalic/specular representation we should have a neested master node instead of doing a new lighting model
|
|
// this is simulated here by doing the conversion on the inputs data.
|
|
SurfaceData data;
|
|
|
|
float3 baseColor = tex2D(_BaseColorMap, input.texCoord0).rgb * _BaseColor.rgb;
|
|
#ifdef _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
|
|
float alpha = _BaseColor.a;
|
|
#else
|
|
float alpha = tex2D(_BaseColorMap, input.texCoord0).a * _BaseColor.a;
|
|
#endif
|
|
|
|
#ifdef _ALPHATEST_ON
|
|
clip(alpha - _Cutoff);
|
|
#endif
|
|
|
|
data.opacity = alpha;
|
|
|
|
// MaskMap is Mettalic, Ambient Occlusion, (Optional) - emissive Mask, Optional - Smoothness (in alpha)
|
|
#ifdef _MASKMAP
|
|
float mettalic = tex2D(_MaskMap, input.texCoord0).r;
|
|
data.ambientOcclusion = tex2D(_MaskMap, input.texCoord0).g;
|
|
#else
|
|
float mettalic = 1.0;
|
|
data.ambientOcclusion = 1.0;
|
|
#endif
|
|
mettalic *= _Mettalic;
|
|
|
|
data.diffuseColor = baseColor * (1.0 - mettalic);
|
|
float f0_dieletric = 0.04;
|
|
data.specularColor = lerp(float3(f0_dieletric, f0_dieletric, f0_dieletric), baseColor, mettalic);
|
|
|
|
#ifdef _SMOOTHNESS_TEXTURE_ALBEDO_CHANNEL_A
|
|
data.perceptualSmoothness = tex2D(_BaseColorMap, input.texCoord0).a;
|
|
#elif defined(_MASKMAP)
|
|
data.perceptualSmoothness = tex2D(_MaskMap, input.texCoord0).a;
|
|
#else
|
|
data.perceptualSmoothness = 1.0;
|
|
#endif
|
|
data.perceptualSmoothness *= _Smoothness;
|
|
|
|
#ifdef _SPECULAROCCLUSIONMAP
|
|
// TODO: Do something. For now just take alpha channel
|
|
data.specularOcclusion = tex2D(_SpecularOcclusionMap, input.texCoord0).a;
|
|
#else
|
|
// Horizon Occlusion for Normal Mapped Reflections: http://marmosetco.tumblr.com/post/81245981087
|
|
//data.specularOcclusion = saturate(1.0 + horizonFade * dot(r, input.tangentToWorld[2].xyz);
|
|
// smooth it
|
|
//data.specularOcclusion *= data.specularOcclusion;
|
|
data.specularOcclusion = 1.0;
|
|
#endif
|
|
|
|
// TODO: think about using BC5
|
|
float3 vertexNormalWS = input.tangentToWorld[2].xyz;
|
|
|
|
#ifdef _NORMALMAP
|
|
#ifdef _NORMALMAP_TANGENT_SPACE
|
|
float3 normalTS = UnpackNormalDXT5nm(tex2D(_NormalMap, input.texCoord0));
|
|
data.normalWS = TransformTangentToWorld(normalTS, input.tangentToWorld);
|
|
#else // Object space (TODO: We need to apply the world rotation here!)
|
|
data.normalWS = tex2D(_NormalMap, input.texCoord0).rgb;
|
|
#endif
|
|
#else
|
|
data.normalWS = vertexNormalWS;
|
|
#endif
|
|
|
|
/*
|
|
#if defined(_DOUBLESIDED_LIGHTING_FLIP) || defined(_DOUBLESIDED_LIGHTING_MIRROR)
|
|
#ifdef _DOUBLESIDED_LIGHTING_FLIP
|
|
float3 oppositeNormalWS = -data.normalWS;
|
|
#else
|
|
// Mirror the normal with the plane define by vertex normal
|
|
float3 oppositeNormalWS = reflect(data.normalWS, vertexNormalWS);
|
|
#endif
|
|
// TODO : Test if GetOdddNegativeScale() is necessary here in case of normal map, as GetOdddNegativeScale is take into account in CreateTangentToWorld();
|
|
//data.normalWS = IS_FRONT_VFACE(GetOdddNegativeScale() : -GetOdddNegativeScale()) >= 0.0 ? data.normalWS : oppositeNormalWS;
|
|
|
|
data.normalWS = IS_FRONT_VFACE(input.cullFace, data.normalWS, -data.normalWS);
|
|
#endif
|
|
*/
|
|
|
|
data.materialId = 0;
|
|
|
|
// TODO: Sample lightmap/lightprobe/volume proxy
|
|
// This should also handle projective lightmap
|
|
// Note that data input above can be use to sample into lightmap (like normal)
|
|
data.diffuseLighting = tex2D(_DiffuseLightingMap, input.texCoord0).rgb;
|
|
|
|
// If we chose an emissive color, we have a dedicated texture for it and don't use MaskMap
|
|
#ifdef _EMISSIVE_COLOR
|
|
data.emissiveColor = tex2D(_EmissiveColorMap, input.texCoord0).rgb * _EmissiveColor;
|
|
#elif _MASKMAP // If we have a MaskMap, use emissive slot as a mask on baseColor
|
|
data.emissiveColor = data.baseColor * tex2D(_MaskMap, uv).b;
|
|
#else
|
|
data.emissiveColor = float3(0.0, 0.0, 0.0);
|
|
#endif
|
|
|
|
data.emissiveIntensity = _EmissiveIntensity;
|
|
|
|
data.subSurfaceRadius = 1.0; // tex2D(_SubSurfaceRadiusMap, input.texCoord0).r * _SubSurfaceRadius;
|
|
|
|
// TODO
|
|
/*
|
|
float _SubSurfaceRadius;
|
|
sampler2D _SubSurfaceRadiusMap;
|
|
float _Thickness;
|
|
sampler2D _ThicknessMap;
|
|
|
|
float _CoatCoverage;
|
|
sampler2D _CoatCoverageMap;
|
|
|
|
float _CoatRoughness;
|
|
sampler2D _CoatRoughnessMap;
|
|
*/
|
|
|
|
// TODO: handle alpha for transparency!
|
|
|
|
return data;
|
|
}
|