您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
335 行
11 KiB
335 行
11 KiB
Shader "Hidden/Internal-TiledReflections" {
|
|
Properties {
|
|
_LightTexture0 ("", any) = "" {}
|
|
_ShadowMapTexture ("", any) = "" {}
|
|
_SrcBlend ("", Float) = 1
|
|
_DstBlend ("", Float) = 1
|
|
}
|
|
SubShader {
|
|
|
|
|
|
|
|
|
|
Pass
|
|
{
|
|
ZWrite Off
|
|
ZTest Always
|
|
Cull Off
|
|
//Blend Off
|
|
Blend [_SrcBlend] [_DstBlend]
|
|
|
|
|
|
CGPROGRAM
|
|
#pragma target 5.0
|
|
#pragma vertex vert
|
|
#pragma fragment frag
|
|
|
|
#include "UnityCG.cginc"
|
|
#include "UnityStandardBRDF.cginc"
|
|
#include "UnityStandardUtils.cginc"
|
|
#include "UnityPBSLighting.cginc"
|
|
|
|
|
|
#include "..\common\ShaderBase.h"
|
|
#include "LightDefinitions.cs"
|
|
|
|
|
|
|
|
uniform float4x4 g_mViewToWorld;
|
|
uniform float4x4 g_mWorldToView;
|
|
uniform float4x4 g_mInvScrProjection;
|
|
uniform float4x4 g_mScrProjection;
|
|
|
|
Texture2D _CameraDepthTexture;
|
|
Texture2D _CameraGBufferTexture0;
|
|
Texture2D _CameraGBufferTexture1;
|
|
Texture2D _CameraGBufferTexture2;
|
|
|
|
UNITY_DECLARE_TEXCUBEARRAY(_reflCubeTextures);
|
|
|
|
StructuredBuffer<uint> g_vLightList;
|
|
StructuredBuffer<SFiniteLightData> g_vLightData;
|
|
|
|
|
|
float GetLinearDepth(float zDptBufSpace) // 0 is near 1 is far
|
|
{
|
|
float3 vP = float3(0.0f,0.0f,zDptBufSpace);
|
|
float4 v4Pres = mul(g_mInvScrProjection, float4(vP,1.0));
|
|
return v4Pres.z / v4Pres.w;
|
|
}
|
|
|
|
|
|
float3 GetViewPosFromLinDepth(float2 v2ScrPos, float fLinDepth)
|
|
{
|
|
float fSx = g_mScrProjection[0].x;
|
|
//float fCx = g_mScrProjection[2].x;
|
|
float fCx = g_mScrProjection[0].z;
|
|
float fSy = g_mScrProjection[1].y;
|
|
//float fCy = g_mScrProjection[2].y;
|
|
float fCy = g_mScrProjection[1].z;
|
|
|
|
#ifdef LEFT_HAND_COORDINATES
|
|
return fLinDepth*float3( ((v2ScrPos.x-fCx)/fSx), ((v2ScrPos.y-fCy)/fSy), 1.0 );
|
|
#else
|
|
return fLinDepth*float3( -((v2ScrPos.x+fCx)/fSx), -((v2ScrPos.y+fCy)/fSy), 1.0 );
|
|
#endif
|
|
}
|
|
|
|
uint FetchLightCount(const uint tileOffs)
|
|
{
|
|
return g_vLightList[ 16*tileOffs + 0]&0xffff;
|
|
}
|
|
|
|
uint FetchIndex(const uint tileOffs, const uint l)
|
|
{
|
|
const uint l1 = l+1;
|
|
return (g_vLightList[ 16*tileOffs + (l1>>1)]>>((l1&1)*16))&0xffff;
|
|
}
|
|
|
|
float3 ExecuteReflectionProbes(uint2 pixCoord, const uint offs);
|
|
float3 OverlayHeatMap(uint uNumLights, float3 c);
|
|
|
|
|
|
struct v2f {
|
|
float4 vertex : SV_POSITION;
|
|
float2 texcoord : TEXCOORD0;
|
|
};
|
|
|
|
v2f vert (float4 vertex : POSITION, float2 texcoord : TEXCOORD0)
|
|
{
|
|
v2f o;
|
|
o.vertex = UnityObjectToClipPos(vertex);
|
|
o.texcoord = texcoord.xy;
|
|
return o;
|
|
}
|
|
|
|
half4 frag (v2f i) : SV_Target
|
|
{
|
|
uint2 pixCoord = ((uint2) i.vertex.xy);
|
|
|
|
uint iWidth;
|
|
uint iHeight;
|
|
_CameraDepthTexture.GetDimensions(iWidth, iHeight);
|
|
uint nrTilesX = (iWidth+15)/16;
|
|
uint nrTilesY = (iHeight+15)/16;
|
|
|
|
uint2 tileIDX = pixCoord / 16;
|
|
|
|
const int offs = tileIDX.y*nrTilesX+tileIDX.x + nrTilesX*nrTilesY; // offset to where the reflection probes are
|
|
|
|
|
|
float3 c = ExecuteReflectionProbes(pixCoord, offs);
|
|
//c = OverlayHeatMap(FetchLightCount(offs), c);
|
|
|
|
return float4(c,1.0);
|
|
}
|
|
|
|
struct StandardData
|
|
{
|
|
float3 specularColor;
|
|
float3 diffuseColor;
|
|
float3 normalWorld;
|
|
float smoothness;
|
|
float occlusion;
|
|
};
|
|
|
|
StandardData UnityStandardDataFromGbuffer(float4 gbuffer0, float4 gbuffer1, float4 gbuffer2)
|
|
{
|
|
StandardData data;
|
|
|
|
data.normalWorld = normalize(2*gbuffer2.xyz-1);
|
|
data.smoothness = gbuffer1.a;
|
|
data.diffuseColor = gbuffer0.xyz; data.specularColor = gbuffer1.xyz;
|
|
data.occlusion = gbuffer0.a;
|
|
|
|
return data;
|
|
}
|
|
|
|
half3 distanceFromAABB(half3 p, half3 aabbMin, half3 aabbMax)
|
|
{
|
|
return max(max(p - aabbMax, aabbMin - p), half3(0.0, 0.0, 0.0));
|
|
}
|
|
|
|
half3 Unity_GlossyEnvironment (UNITY_ARGS_TEXCUBEARRAY(tex), int sliceIndex, half4 hdr, Unity_GlossyEnvironmentData glossIn);
|
|
|
|
float3 ExecuteReflectionProbes(uint2 pixCoord, const uint offs)
|
|
{
|
|
float3 v3ScrPos = float3(pixCoord.x+0.5, pixCoord.y+0.5, FetchDepth(_CameraDepthTexture, pixCoord.xy).x);
|
|
float linDepth = GetLinearDepth(v3ScrPos.z);
|
|
float3 vP = GetViewPosFromLinDepth(v3ScrPos.xy, linDepth);
|
|
float3 worldPos = mul(g_mViewToWorld, float4(vP.xyz,1.0)).xyz; //unity_CameraToWorld
|
|
|
|
float3 vWSpaceVDir = normalize(mul((float3x3) g_mViewToWorld, -vP).xyz); //unity_CameraToWorld
|
|
|
|
float4 gbuffer0 = _CameraGBufferTexture0.Load( uint3(pixCoord.xy, 0) );
|
|
float4 gbuffer1 = _CameraGBufferTexture1.Load( uint3(pixCoord.xy, 0) );
|
|
float4 gbuffer2 = _CameraGBufferTexture2.Load( uint3(pixCoord.xy, 0) );
|
|
|
|
StandardData data = UnityStandardDataFromGbuffer(gbuffer0, gbuffer1, gbuffer2);
|
|
|
|
float oneMinusReflectivity = 1.0 - SpecularStrength(data.specularColor.rgb);
|
|
float3 worldNormalRefl = reflect(-vWSpaceVDir, data.normalWorld);
|
|
|
|
float3 vspaceRefl = mul((float3x3) g_mWorldToView, worldNormalRefl).xyz;
|
|
|
|
|
|
UnityLight light;
|
|
light.color = 0;
|
|
light.dir = 0;
|
|
|
|
float3 ints = 0;
|
|
|
|
const uint uNrLights = FetchLightCount(offs);
|
|
|
|
uint l=0;
|
|
|
|
// we need this outer loop for when we cannot assume a wavefront is 64 wide
|
|
// since in this case we cannot assume the lights will remain sorted by type
|
|
// during processing in lightlist_cs.hlsl
|
|
#if !defined(XBONE) && !defined(PLAYSTATION4)
|
|
while(l<uNrLights)
|
|
#endif
|
|
{
|
|
uint uIndex = l<uNrLights ? FetchIndex(offs, l) : 0;
|
|
uint uLgtType = l<uNrLights ? g_vLightData[uIndex].uLightType : 0;
|
|
|
|
// specialized loop for sphere lights
|
|
while(l<uNrLights && uLgtType==(uint) BOX_LIGHT)
|
|
{
|
|
SFiniteLightData lgtDat = g_vLightData[uIndex];
|
|
float3 vLp = lgtDat.vLpos.xyz;
|
|
float3 vecToSurfPos = vP - vLp; // vector from reflection volume to surface position in camera space
|
|
float3 posInReflVolumeSpace = float3( dot(vecToSurfPos, lgtDat.vLaxisX), dot(vecToSurfPos, lgtDat.vLaxisY), dot(vecToSurfPos, lgtDat.vLaxisZ) );
|
|
|
|
|
|
float blendDistance = lgtDat.fProbeBlendDistance;//unity_SpecCube1_ProbePosition.w; // will be set to blend distance for this probe
|
|
|
|
float3 sampleDir;
|
|
if((lgtDat.flags&IS_BOX_PROJECTED)!=0)
|
|
{
|
|
// For box projection, use expanded bounds as they are rendered; otherwise
|
|
// box projection artifacts when outside of the box.
|
|
//float4 boxMin = unity_SpecCube0_BoxMin - float4(blendDistance,blendDistance,blendDistance,0);
|
|
//float4 boxMax = unity_SpecCube0_BoxMax + float4(blendDistance,blendDistance,blendDistance,0);
|
|
//sampleDir = BoxProjectedCubemapDirection (worldNormalRefl, worldPos, unity_SpecCube0_ProbePosition, boxMin, boxMax);
|
|
|
|
float4 vBoxOuterDistance = float4( lgtDat.vBoxInnerDist + float3(blendDistance, blendDistance, blendDistance), 0.0 );
|
|
#if 0
|
|
// if rotation is NOT supported
|
|
sampleDir = BoxProjectedCubemapDirection(worldNormalRefl, posInReflVolumeSpace, float4(lgtDat.vLocalCubeCapturePoint, 1.0), -vBoxOuterDistance, vBoxOuterDistance);
|
|
#else
|
|
float3 volumeSpaceRefl = float3( dot(vspaceRefl, lgtDat.vLaxisX), dot(vspaceRefl, lgtDat.vLaxisY), dot(vspaceRefl, lgtDat.vLaxisZ) );
|
|
float3 vPR = BoxProjectedCubemapDirection(volumeSpaceRefl, posInReflVolumeSpace, float4(lgtDat.vLocalCubeCapturePoint, 1.0), -vBoxOuterDistance, vBoxOuterDistance); // Volume space corrected reflection vector
|
|
sampleDir = mul( (float3x3) g_mViewToWorld, vPR.x*lgtDat.vLaxisX + vPR.y*lgtDat.vLaxisY + vPR.z*lgtDat.vLaxisZ );
|
|
#endif
|
|
}
|
|
else
|
|
sampleDir = worldNormalRefl;
|
|
|
|
Unity_GlossyEnvironmentData g;
|
|
g.roughness = SmoothnessToPerceptualRoughness(data.smoothness);
|
|
g.reflUVW = sampleDir;
|
|
|
|
half3 env0 = Unity_GlossyEnvironment(UNITY_PASS_TEXCUBEARRAY(_reflCubeTextures), lgtDat.iSliceIndex, float4(lgtDat.fLightIntensity, lgtDat.fDecodeExp, 0.0, 0.0), g);
|
|
|
|
|
|
UnityIndirect ind;
|
|
ind.diffuse = 0;
|
|
ind.specular = env0 * data.occlusion;
|
|
|
|
half3 rgb = UNITY_BRDF_PBS(0, data.specularColor, oneMinusReflectivity, data.smoothness, data.normalWorld, vWSpaceVDir, light, ind).rgb;
|
|
|
|
// Calculate falloff value, so reflections on the edges of the Volume would gradually blend to previous reflection.
|
|
// Also this ensures that pixels not located in the reflection Volume AABB won't
|
|
// accidentally pick up reflections from this Volume.
|
|
//half3 distance = distanceFromAABB(worldPos, unity_SpecCube0_BoxMin.xyz, unity_SpecCube0_BoxMax.xyz);
|
|
half3 distance = distanceFromAABB(posInReflVolumeSpace, -lgtDat.vBoxInnerDist, lgtDat.vBoxInnerDist);
|
|
half falloff = saturate(1.0 - length(distance)/blendDistance);
|
|
|
|
ints = lerp(ints, rgb, falloff);
|
|
|
|
// next probe
|
|
++l; uIndex = l<uNrLights ? FetchIndex(offs, l) : 0;
|
|
uLgtType = l<uNrLights ? g_vLightData[uIndex].uLightType : 0;
|
|
}
|
|
|
|
#if !defined(XBONE) && !defined(PLAYSTATION4)
|
|
if(uLgtType!=BOX_LIGHT) ++l;
|
|
#endif
|
|
}
|
|
|
|
return ints;
|
|
}
|
|
|
|
float3 OverlayHeatMap(uint uNumLights, float3 c)
|
|
{
|
|
/////////////////////////////////////////////////////////////////////
|
|
//
|
|
const float4 kRadarColors[12] =
|
|
{
|
|
float4(0.0,0.0,0.0,0.0), // black
|
|
float4(0.0,0.0,0.6,0.5), // dark blue
|
|
float4(0.0,0.0,0.9,0.5), // blue
|
|
float4(0.0,0.6,0.9,0.5), // light blue
|
|
float4(0.0,0.9,0.9,0.5), // cyan
|
|
float4(0.0,0.9,0.6,0.5), // blueish green
|
|
float4(0.0,0.9,0.0,0.5), // green
|
|
float4(0.6,0.9,0.0,0.5), // yellowish green
|
|
float4(0.9,0.9,0.0,0.5), // yellow
|
|
float4(0.9,0.6,0.0,0.5), // orange
|
|
float4(0.9,0.0,0.0,0.5), // red
|
|
float4(1.0,0.0,0.0,0.9) // strong red
|
|
};
|
|
|
|
float fMaxNrLightsPerTile = 24;
|
|
|
|
|
|
|
|
int nColorIndex = uNumLights==0 ? 0 : (1 + (int) floor(10 * (log2((float)uNumLights) / log2(fMaxNrLightsPerTile))) );
|
|
nColorIndex = nColorIndex<0 ? 0 : nColorIndex;
|
|
float4 col = nColorIndex>11 ? float4(1.0,1.0,1.0,1.0) : kRadarColors[nColorIndex];
|
|
|
|
return lerp(c, pow(col.xyz, 2.2), 0.3*col.w);
|
|
}
|
|
|
|
|
|
half3 Unity_GlossyEnvironment (UNITY_ARGS_TEXCUBEARRAY(tex), int sliceIndex, half4 hdr, Unity_GlossyEnvironmentData glossIn)
|
|
{
|
|
#if UNITY_GLOSS_MATCHES_MARMOSET_TOOLBAG2 && (SHADER_TARGET >= 30)
|
|
// TODO: remove pow, store cubemap mips differently
|
|
half perceptualRoughness = pow(glossIn.perceptualRoughness, 3.0/4.0);
|
|
#else
|
|
half perceptualRoughness = glossIn.roughness; // MM: switched to this
|
|
#endif
|
|
//perceptualRoughness = sqrt(sqrt(2/(64.0+2))); // spec power to the square root of real roughness
|
|
|
|
#if 0
|
|
float m = perceptualRoughness*perceptualRoughness; // m is the real roughness parameter
|
|
const float fEps = 1.192092896e-07F; // smallest such that 1.0+FLT_EPSILON != 1.0 (+1e-4h is NOT good here. is visibly very wrong)
|
|
float n = (2.0/max(fEps, m*m))-2.0; // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf
|
|
|
|
n /= 4; // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html
|
|
|
|
perceptualRoughness = pow( 2/(n+2), 0.25); // remap back to square root of real roughness
|
|
#else
|
|
// MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.
|
|
perceptualRoughness = perceptualRoughness*(1.7 - 0.7*perceptualRoughness);
|
|
#endif
|
|
|
|
|
|
|
|
half mip = perceptualRoughness * UNITY_SPECCUBE_LOD_STEPS;
|
|
half4 rgbm = UNITY_SAMPLE_TEXCUBEARRAY_LOD(tex, float4(glossIn.reflUVW.xyz, sliceIndex), mip);
|
|
|
|
//return rgbm.xyz;
|
|
return DecodeHDR_NoLinearSupportInSM2 (rgbm, hdr);
|
|
}
|
|
|
|
|
|
|
|
ENDCG
|
|
}
|
|
|
|
}
|
|
Fallback Off
|
|
}
|