Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

57 行
1.8 KiB

from typing import List, Dict
from mlagents.torch_utils import torch, nn
from mlagents.trainers.torch.layers import linear_layer, HyperNetwork
class ValueHeads(nn.Module):
def __init__(self, stream_names: List[str], input_size: int, output_size: int = 1):
super().__init__()
self.stream_names = stream_names
_value_heads = {}
for name in stream_names:
value = linear_layer(input_size, output_size)
_value_heads[name] = value
self.value_heads = nn.ModuleDict(_value_heads)
def forward(self, hidden: torch.Tensor) -> Dict[str, torch.Tensor]:
value_outputs = {}
for stream_name, head in self.value_heads.items():
value_outputs[stream_name] = head(hidden).squeeze(-1)
return value_outputs
class ValueHeadsHyperNetwork(nn.Module):
def __init__(
self,
num_layers,
layer_size,
goal_size,
stream_names: List[str],
input_size: int,
output_size: int = 1,
):
super().__init__()
self.stream_names = stream_names
self._num_goals = goal_size
self.input_size = input_size
self.output_size = output_size
self.streams_size = len(stream_names)
self.hypernetwork = HyperNetwork(
input_size,
self.output_size * self.streams_size,
goal_size,
num_layers,
layer_size,
)
def forward(
self, hidden: torch.Tensor, goal: torch.Tensor
) -> Dict[str, torch.Tensor]:
output = self.hypernetwork(hidden, goal)
value_outputs = {}
output_list = torch.split(output, self.output_size, dim=1)
for stream_name, output_activation in zip(self.stream_names, output_list):
value_outputs[stream_name] = output_activation
return value_outputs