from typing import List, Dict from mlagents.torch_utils import torch, nn from mlagents.trainers.torch.layers import linear_layer, HyperNetwork class ValueHeads(nn.Module): def __init__(self, stream_names: List[str], input_size: int, output_size: int = 1): super().__init__() self.stream_names = stream_names _value_heads = {} for name in stream_names: value = linear_layer(input_size, output_size) _value_heads[name] = value self.value_heads = nn.ModuleDict(_value_heads) def forward(self, hidden: torch.Tensor) -> Dict[str, torch.Tensor]: value_outputs = {} for stream_name, head in self.value_heads.items(): value_outputs[stream_name] = head(hidden).squeeze(-1) return value_outputs class ValueHeadsHyperNetwork(nn.Module): def __init__( self, num_layers, layer_size, goal_size, stream_names: List[str], input_size: int, output_size: int = 1, ): super().__init__() self.stream_names = stream_names self._num_goals = goal_size self.input_size = input_size self.output_size = output_size self.streams_size = len(stream_names) self.hypernetwork = HyperNetwork( input_size, self.output_size * self.streams_size, goal_size, num_layers, layer_size, ) def forward( self, hidden: torch.Tensor, goal: torch.Tensor ) -> Dict[str, torch.Tensor]: output = self.hypernetwork(hidden, goal) value_outputs = {} output_list = torch.split(output, self.output_size, dim=1) for stream_name, output_activation in zip(self.stream_names, output_list): value_outputs[stream_name] = output_activation return value_outputs