Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

55 行
1.7 KiB

from mlagents.trainers.tests.mock_brain import make_fake_trajectory
from mlagents.trainers.tests.dummy_config import create_observation_specs_with_shapes
from mlagents_envs.base_env import ActionSpec
from mlagents.trainers.buffer import BufferKey, ObservationKeyPrefix
VEC_OBS_SIZE = 6
ACTION_SIZE = 4
def test_trajectory_to_agentbuffer():
length = 15
wanted_keys = [
(ObservationKeyPrefix.OBSERVATION, 0),
(ObservationKeyPrefix.OBSERVATION, 1),
(ObservationKeyPrefix.NEXT_OBSERVATION, 0),
(ObservationKeyPrefix.NEXT_OBSERVATION, 1),
BufferKey.MEMORY,
BufferKey.MASKS,
BufferKey.DONE,
BufferKey.CONTINUOUS_ACTION,
BufferKey.DISCRETE_ACTION,
BufferKey.CONTINUOUS_LOG_PROBS,
BufferKey.DISCRETE_LOG_PROBS,
BufferKey.ACTION_MASK,
BufferKey.PREV_ACTION,
BufferKey.ENVIRONMENT_REWARDS,
]
wanted_group_keys = [
"group_obs_0",
"group_obs_1",
"group_obs_next_0",
"group_obs_next_1",
"groupmate_rewards",
"group_dones",
]
wanted_keys = set(wanted_keys + wanted_group_keys)
trajectory = make_fake_trajectory(
length=length,
observation_specs=create_observation_specs_with_shapes(
[(VEC_OBS_SIZE,), (84, 84, 3)]
),
action_spec=ActionSpec.create_continuous(ACTION_SIZE),
num_other_agents_in_group=4,
)
agentbuffer = trajectory.to_agentbuffer()
seen_keys = set()
for key, field in agentbuffer.items():
assert len(field) == length
seen_keys.add(key)
assert seen_keys.issuperset(wanted_keys)
for _key in wanted_group_keys:
for step in agentbuffer[_key]:
assert len(step) == 4