from mlagents.trainers.tests.mock_brain import make_fake_trajectory from mlagents.trainers.tests.dummy_config import create_observation_specs_with_shapes from mlagents_envs.base_env import ActionSpec from mlagents.trainers.buffer import BufferKey, ObservationKeyPrefix VEC_OBS_SIZE = 6 ACTION_SIZE = 4 def test_trajectory_to_agentbuffer(): length = 15 wanted_keys = [ (ObservationKeyPrefix.OBSERVATION, 0), (ObservationKeyPrefix.OBSERVATION, 1), (ObservationKeyPrefix.NEXT_OBSERVATION, 0), (ObservationKeyPrefix.NEXT_OBSERVATION, 1), BufferKey.MEMORY, BufferKey.MASKS, BufferKey.DONE, BufferKey.CONTINUOUS_ACTION, BufferKey.DISCRETE_ACTION, BufferKey.CONTINUOUS_LOG_PROBS, BufferKey.DISCRETE_LOG_PROBS, BufferKey.ACTION_MASK, BufferKey.PREV_ACTION, BufferKey.ENVIRONMENT_REWARDS, ] wanted_group_keys = [ "group_obs_0", "group_obs_1", "group_obs_next_0", "group_obs_next_1", "groupmate_rewards", "group_dones", ] wanted_keys = set(wanted_keys + wanted_group_keys) trajectory = make_fake_trajectory( length=length, observation_specs=create_observation_specs_with_shapes( [(VEC_OBS_SIZE,), (84, 84, 3)] ), action_spec=ActionSpec.create_continuous(ACTION_SIZE), num_other_agents_in_group=4, ) agentbuffer = trajectory.to_agentbuffer() seen_keys = set() for key, field in agentbuffer.items(): assert len(field) == length seen_keys.add(key) assert seen_keys.issuperset(wanted_keys) for _key in wanted_group_keys: for step in agentbuffer[_key]: assert len(step) == 4