您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
429 行
14 KiB
429 行
14 KiB
import json
|
|
import os
|
|
from unittest.mock import *
|
|
|
|
import yaml
|
|
import pytest
|
|
|
|
from mlagents.trainers import ActionInfo
|
|
from mlagents.trainers.trainer_controller import TrainerController
|
|
from mlagents.trainers.ppo.trainer import PPOTrainer
|
|
from mlagents.trainers.bc.offline_trainer import OfflineBCTrainer
|
|
from mlagents.trainers.bc.online_trainer import OnlineBCTrainer
|
|
from mlagents.envs.exception import UnityEnvironmentException
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_config():
|
|
return yaml.load(
|
|
'''
|
|
default:
|
|
trainer: ppo
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
use_curiosity: false
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
''')
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_online_bc_config():
|
|
return yaml.load(
|
|
'''
|
|
default:
|
|
trainer: online_bc
|
|
brain_to_imitate: ExpertBrain
|
|
batches_per_epoch: 16
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
use_curiosity: false
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
''')
|
|
|
|
|
|
@pytest.fixture
|
|
def dummy_offline_bc_config():
|
|
return yaml.load(
|
|
'''
|
|
default:
|
|
trainer: offline_bc
|
|
demo_path: '''
|
|
+ os.path.dirname(os.path.abspath(__file__)) + '''/test.demo
|
|
batches_per_epoch: 16
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
use_curiosity: false
|
|
curiosity_strength: 0.0
|
|
curiosity_enc_size: 1
|
|
''')
|
|
|
|
@pytest.fixture
|
|
def dummy_offline_bc_config_with_override():
|
|
base = dummy_offline_bc_config()
|
|
base['testbrain'] = {}
|
|
base['testbrain']['normalize'] = False
|
|
return base
|
|
|
|
@pytest.fixture
|
|
def dummy_bad_config():
|
|
return yaml.load(
|
|
'''
|
|
default:
|
|
trainer: incorrect_trainer
|
|
brain_to_imitate: ExpertBrain
|
|
batches_per_epoch: 16
|
|
batch_size: 32
|
|
beta: 5.0e-3
|
|
buffer_size: 512
|
|
epsilon: 0.2
|
|
gamma: 0.99
|
|
hidden_units: 128
|
|
lambd: 0.95
|
|
learning_rate: 3.0e-4
|
|
max_steps: 5.0e4
|
|
normalize: true
|
|
num_epoch: 5
|
|
num_layers: 2
|
|
time_horizon: 64
|
|
sequence_length: 64
|
|
summary_freq: 1000
|
|
use_recurrent: false
|
|
memory_size: 8
|
|
''')
|
|
|
|
@pytest.fixture
|
|
def basic_trainer_controller(brain_info):
|
|
return TrainerController(
|
|
model_path='test_model_path',
|
|
summaries_dir='test_summaries_dir',
|
|
run_id='test_run_id',
|
|
save_freq=100,
|
|
meta_curriculum=None,
|
|
load=True,
|
|
train=True,
|
|
keep_checkpoints=False,
|
|
lesson=None,
|
|
external_brains={'testbrain': brain_info},
|
|
training_seed=99
|
|
)
|
|
|
|
@patch('numpy.random.seed')
|
|
@patch('tensorflow.set_random_seed')
|
|
def test_initialization_seed(numpy_random_seed, tensorflow_set_seed):
|
|
seed = 27
|
|
TrainerController('', '', '1', 1, None, True, False, False, None, {}, seed)
|
|
numpy_random_seed.assert_called_with(seed)
|
|
tensorflow_set_seed.assert_called_with(seed)
|
|
|
|
|
|
def assert_bc_trainer_constructed(trainer_cls, input_config, tc, expected_brain_info, expected_config):
|
|
def mock_constructor(self, brain, trainer_params, training, load, seed, run_id):
|
|
assert(brain == expected_brain_info)
|
|
assert(trainer_params == expected_config)
|
|
assert(training == tc.train_model)
|
|
assert(load == tc.load_model)
|
|
assert(seed == tc.seed)
|
|
assert(run_id == tc.run_id)
|
|
|
|
with patch.object(trainer_cls, "__init__", mock_constructor):
|
|
tc.initialize_trainers(input_config)
|
|
assert('testbrain' in tc.trainers)
|
|
assert(isinstance(tc.trainers['testbrain'], trainer_cls))
|
|
|
|
|
|
def assert_ppo_trainer_constructed(input_config, tc, expected_brain_info,
|
|
expected_config, expected_reward_buff_cap=0):
|
|
def mock_constructor(self, brain, reward_buff_cap, trainer_parameters, training, load, seed, run_id):
|
|
assert(brain == expected_brain_info)
|
|
assert(trainer_parameters == expected_config)
|
|
assert(reward_buff_cap == expected_reward_buff_cap)
|
|
assert(training == tc.train_model)
|
|
assert(load == tc.load_model)
|
|
assert(seed == tc.seed)
|
|
assert(run_id == tc.run_id)
|
|
|
|
with patch.object(PPOTrainer, "__init__", mock_constructor):
|
|
tc.initialize_trainers(input_config)
|
|
assert('testbrain' in tc.trainers)
|
|
assert(isinstance(tc.trainers['testbrain'], PPOTrainer))
|
|
|
|
|
|
@patch('mlagents.envs.BrainInfo')
|
|
def test_initialize_trainer_parameters_uses_defaults(BrainInfoMock):
|
|
brain_info_mock = BrainInfoMock()
|
|
tc = basic_trainer_controller(brain_info_mock)
|
|
|
|
full_config = dummy_offline_bc_config()
|
|
expected_config = full_config['default']
|
|
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
|
|
expected_config['model_path'] = tc.model_path + '/testbrain'
|
|
expected_config['keep_checkpoints'] = tc.keep_checkpoints
|
|
|
|
assert_bc_trainer_constructed(OfflineBCTrainer, full_config, tc, brain_info_mock, expected_config)
|
|
|
|
|
|
@patch('mlagents.envs.BrainInfo')
|
|
def test_initialize_trainer_parameters_override_defaults(BrainInfoMock):
|
|
brain_info_mock = BrainInfoMock()
|
|
tc = basic_trainer_controller(brain_info_mock)
|
|
|
|
full_config = dummy_offline_bc_config_with_override()
|
|
expected_config = full_config['default']
|
|
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
|
|
expected_config['model_path'] = tc.model_path + '/testbrain'
|
|
expected_config['keep_checkpoints'] = tc.keep_checkpoints
|
|
|
|
# Override value from specific brain config
|
|
expected_config['normalize'] = False
|
|
|
|
assert_bc_trainer_constructed(OfflineBCTrainer, full_config, tc, brain_info_mock, expected_config)
|
|
|
|
|
|
@patch('mlagents.envs.BrainInfo')
|
|
def test_initialize_online_bc_trainer(BrainInfoMock):
|
|
brain_info_mock = BrainInfoMock()
|
|
tc = basic_trainer_controller(brain_info_mock)
|
|
|
|
full_config = dummy_online_bc_config()
|
|
expected_config = full_config['default']
|
|
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
|
|
expected_config['model_path'] = tc.model_path + '/testbrain'
|
|
expected_config['keep_checkpoints'] = tc.keep_checkpoints
|
|
|
|
assert_bc_trainer_constructed(OnlineBCTrainer, full_config, tc, brain_info_mock, expected_config)
|
|
|
|
|
|
@patch('mlagents.envs.BrainInfo')
|
|
def test_initialize_ppo_trainer(BrainInfoMock):
|
|
brain_info_mock = BrainInfoMock()
|
|
tc = basic_trainer_controller(brain_info_mock)
|
|
|
|
full_config = dummy_config()
|
|
expected_config = full_config['default']
|
|
expected_config['summary_path'] = tc.summaries_dir + '/test_run_id_testbrain'
|
|
expected_config['model_path'] = tc.model_path + '/testbrain'
|
|
expected_config['keep_checkpoints'] = tc.keep_checkpoints
|
|
|
|
assert_ppo_trainer_constructed(full_config, tc, brain_info_mock, expected_config)
|
|
|
|
|
|
@patch('mlagents.envs.BrainInfo')
|
|
def test_initialize_invalid_trainer_raises_exception(BrainInfoMock):
|
|
brain_info_mock = BrainInfoMock()
|
|
tc = basic_trainer_controller(brain_info_mock)
|
|
bad_config = dummy_bad_config()
|
|
|
|
try:
|
|
tc.initialize_trainers(bad_config)
|
|
assert(1 == 0, "Initialize trainers with bad config did not raise an exception.")
|
|
except UnityEnvironmentException:
|
|
pass
|
|
|
|
|
|
def trainer_controller_with_start_learning_mocks():
|
|
trainer_mock = MagicMock()
|
|
trainer_mock.get_step = 0
|
|
trainer_mock.get_max_steps = 5
|
|
trainer_mock.parameters = {'some': 'parameter'}
|
|
trainer_mock.write_tensorboard_text = MagicMock()
|
|
|
|
brain_info_mock = MagicMock()
|
|
tc = basic_trainer_controller(brain_info_mock)
|
|
tc.initialize_trainers = MagicMock()
|
|
tc.trainers = {'testbrain': trainer_mock}
|
|
tc.take_step = MagicMock()
|
|
|
|
def take_step_sideeffect(env, curr_info):
|
|
tc.trainers['testbrain'].get_step += 1
|
|
if tc.trainers['testbrain'].get_step > 10:
|
|
raise KeyboardInterrupt
|
|
tc.take_step.side_effect = take_step_sideeffect
|
|
|
|
tc._export_graph = MagicMock()
|
|
tc._save_model = MagicMock()
|
|
return tc, trainer_mock
|
|
|
|
|
|
@patch('tensorflow.reset_default_graph')
|
|
def test_start_learning_trains_forever_if_no_train_model(tf_reset_graph):
|
|
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
|
|
tc.train_model = False
|
|
|
|
trainer_config = dummy_config()
|
|
tf_reset_graph.return_value = None
|
|
|
|
env_mock = MagicMock()
|
|
env_mock.close = MagicMock()
|
|
env_mock.reset = MagicMock()
|
|
|
|
tc.start_learning(env_mock, trainer_config)
|
|
tf_reset_graph.assert_called_once()
|
|
tc.initialize_trainers.assert_called_once_with(trainer_config)
|
|
env_mock.reset.assert_called_once()
|
|
assert (tc.take_step.call_count == 11)
|
|
tc._export_graph.assert_not_called()
|
|
tc._save_model.assert_not_called()
|
|
env_mock.close.assert_called_once()
|
|
|
|
|
|
@patch('tensorflow.reset_default_graph')
|
|
def test_start_learning_trains_until_max_steps_then_saves(tf_reset_graph):
|
|
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
|
|
trainer_config = dummy_config()
|
|
tf_reset_graph.return_value = None
|
|
|
|
brain_info_mock = MagicMock()
|
|
env_mock = MagicMock()
|
|
env_mock.close = MagicMock()
|
|
env_mock.reset = MagicMock(return_value=brain_info_mock)
|
|
|
|
tc.start_learning(env_mock, trainer_config)
|
|
tf_reset_graph.assert_called_once()
|
|
tc.initialize_trainers.assert_called_once_with(trainer_config)
|
|
env_mock.reset.assert_called_once()
|
|
assert(tc.take_step.call_count == trainer_mock.get_max_steps + 1)
|
|
env_mock.close.assert_called_once()
|
|
tc._save_model.assert_called_once_with(steps=6)
|
|
|
|
|
|
def test_start_learning_updates_meta_curriculum_lesson_number():
|
|
tc, trainer_mock = trainer_controller_with_start_learning_mocks()
|
|
trainer_config = dummy_config()
|
|
|
|
brain_info_mock = MagicMock()
|
|
env_mock = MagicMock()
|
|
env_mock.close = MagicMock()
|
|
env_mock.reset = MagicMock(return_value=brain_info_mock)
|
|
|
|
meta_curriculum_mock = MagicMock()
|
|
meta_curriculum_mock.set_all_curriculums_to_lesson_num = MagicMock()
|
|
tc.meta_curriculum = meta_curriculum_mock
|
|
tc.lesson = 5
|
|
|
|
tc.start_learning(env_mock, trainer_config)
|
|
meta_curriculum_mock.set_all_curriculums_to_lesson_num.assert_called_once_with(tc.lesson)
|
|
|
|
|
|
def trainer_controller_with_take_step_mocks():
|
|
trainer_mock = MagicMock()
|
|
trainer_mock.get_step = 0
|
|
trainer_mock.get_max_steps = 5
|
|
trainer_mock.parameters = {'some': 'parameter'}
|
|
trainer_mock.write_tensorboard_text = MagicMock()
|
|
|
|
brain_info_mock = MagicMock()
|
|
tc = basic_trainer_controller(brain_info_mock)
|
|
tc.trainers = {'testbrain': trainer_mock}
|
|
|
|
return tc, trainer_mock
|
|
|
|
|
|
def test_take_step_resets_env_on_global_done():
|
|
tc, trainer_mock = trainer_controller_with_take_step_mocks()
|
|
|
|
brain_info_mock = MagicMock()
|
|
trainer_mock.add_experiences = MagicMock()
|
|
trainer_mock.process_experiences = MagicMock()
|
|
trainer_mock.update_policy = MagicMock()
|
|
trainer_mock.write_summary = MagicMock()
|
|
trainer_mock.trainer.increment_step_and_update_last_reward = MagicMock()
|
|
env_mock = MagicMock()
|
|
step_data_mock_out = MagicMock()
|
|
env_mock.step = MagicMock(return_value=step_data_mock_out)
|
|
env_mock.close = MagicMock()
|
|
env_mock.reset = MagicMock(return_value=brain_info_mock)
|
|
env_mock.global_done = True
|
|
|
|
trainer_mock.get_action = MagicMock(return_value = ActionInfo(None, None, None, None, None))
|
|
|
|
tc.take_step(env_mock, brain_info_mock)
|
|
env_mock.reset.assert_called_once()
|
|
|
|
|
|
def test_take_step_adds_experiences_to_trainer_and_trains():
|
|
tc, trainer_mock = trainer_controller_with_take_step_mocks()
|
|
|
|
curr_info_mock = MagicMock()
|
|
brain_info_mock = MagicMock()
|
|
curr_info_mock.__getitem__ = MagicMock(return_value=brain_info_mock)
|
|
trainer_mock.is_ready_update = MagicMock(return_value=True)
|
|
|
|
env_mock = MagicMock()
|
|
env_step_output_mock = MagicMock()
|
|
env_mock.step = MagicMock(return_value=env_step_output_mock)
|
|
env_mock.close = MagicMock()
|
|
env_mock.reset = MagicMock(return_value=curr_info_mock)
|
|
env_mock.global_done = False
|
|
|
|
action_output_mock = ActionInfo(
|
|
'action',
|
|
'memory',
|
|
'actiontext',
|
|
'value',
|
|
{'some': 'output'}
|
|
)
|
|
trainer_mock.get_action = MagicMock(return_value=action_output_mock)
|
|
|
|
tc.take_step(env_mock, curr_info_mock)
|
|
env_mock.reset.assert_not_called()
|
|
trainer_mock.get_action.assert_called_once_with(brain_info_mock)
|
|
env_mock.step.assert_called_once_with(
|
|
vector_action={'testbrain': action_output_mock.action},
|
|
memory={'testbrain': action_output_mock.memory},
|
|
text_action={'testbrain': action_output_mock.text},
|
|
value={'testbrain': action_output_mock.value}
|
|
)
|
|
trainer_mock.add_experiences.assert_called_once_with(
|
|
curr_info_mock, env_step_output_mock, action_output_mock.outputs
|
|
)
|
|
trainer_mock.process_experiences.assert_called_once_with(curr_info_mock, env_step_output_mock)
|
|
trainer_mock.update_policy.assert_called_once()
|
|
trainer_mock.write_summary.assert_called_once()
|
|
trainer_mock.increment_step_and_update_last_reward.assert_called_once()
|