Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

51 行
1.6 KiB

from mlagents.trainers.policy import *
from unittest.mock import MagicMock
def basic_mock_brain():
mock_brain = MagicMock()
mock_brain.vector_action_space_type = "continuous"
return mock_brain
def basic_params():
return {
"use_recurrent": False,
"model_path": "my/path"
}
def test_take_action_returns_empty_with_no_agents():
test_seed = 3
policy = Policy(test_seed, basic_mock_brain(), basic_params())
no_agent_brain_info = BrainInfo([], [], [], agents=[])
result = policy.get_action(no_agent_brain_info)
assert(result == ActionInfo([], [], [], None, None))
def test_take_action_returns_nones_on_missing_values():
test_seed = 3
policy = Policy(test_seed, basic_mock_brain(), basic_params())
policy.evaluate = MagicMock(return_value={})
brain_info_with_agents = BrainInfo([], [], [], agents=['an-agent-id'])
result = policy.get_action(brain_info_with_agents)
assert(result == ActionInfo(None, None, None, None, {}))
def test_take_action_returns_action_info_when_available():
test_seed = 3
policy = Policy(test_seed, basic_mock_brain(), basic_params())
policy_eval_out = {
'action': np.array([1.0]),
'memory_out': np.array([2.5]),
'value': np.array([1.1])
}
policy.evaluate = MagicMock(return_value=policy_eval_out)
brain_info_with_agents = BrainInfo([], [], [], agents=['an-agent-id'])
result = policy.get_action(brain_info_with_agents)
expected = ActionInfo(
policy_eval_out['action'],
policy_eval_out['memory_out'],
None,
policy_eval_out['value'],
policy_eval_out
)
assert (result == expected)