Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

141 行
5.2 KiB

using System.Collections.Generic;
using MLAgents.InferenceBrain.Utils;
namespace MLAgents.InferenceBrain
{
/// <summary>
/// The Applier for the Continuous Action output tensor. Tensor is assumed to contain the
/// continuous action data of the agents in the batch.
/// </summary>
public class ContinuousActionOutputApplier : TensorApplier.Applier
{
public void Apply(Tensor tensor, Dictionary<Agent, AgentInfo> agentInfo)
{
var tensorDataAction = tensor.Data as float[,];
var actionSize = tensor.Shape[1];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var action = new float[actionSize];
for (var j = 0; j < actionSize; j++)
{
action[j] = tensorDataAction[agentIndex, j];
}
agent.UpdateVectorAction(action);
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Discrete Action output tensor. Uses multinomial to sample discrete
/// actions from the logits contained in the tensor.
/// </summary>
public class DiscreteActionOutputApplier : TensorApplier.Applier
{
private int[] _actionSize;
private Multinomial _multinomial;
public DiscreteActionOutputApplier(int[] actionSize, int seed)
{
_actionSize = actionSize;
_multinomial = new Multinomial(seed);
}
public void Apply(Tensor tensor, Dictionary<Agent, AgentInfo> agentInfo)
{
var tensorDataProbabilities = tensor.Data as float[,];
var batchSize = agentInfo.Keys.Count;
var actions = new float[batchSize, _actionSize.Length];
var startActionIndices = Utilities.CumSum(_actionSize);
for (var actionIndex=0; actionIndex < _actionSize.Length; actionIndex++)
{
var nBranchAction = _actionSize[actionIndex];
var actionProbs = new float[batchSize, nBranchAction];
for (var batchIndex = 0; batchIndex < batchSize; batchIndex++)
{
for (var branchActionIndex = 0;
branchActionIndex < nBranchAction;
branchActionIndex++)
{
actionProbs[batchIndex, branchActionIndex] =
tensorDataProbabilities[
batchIndex, startActionIndices[actionIndex] + branchActionIndex];
}
}
var inputTensor = new Tensor()
{
ValueType = Tensor.TensorType.FloatingPoint,
Shape = new long[]{batchSize, _actionSize[actionIndex]},
Data = actionProbs
};
var outputTensor = new Tensor()
{
ValueType = Tensor.TensorType.FloatingPoint,
Shape = new long[]{batchSize, 1},
Data = new float[batchSize, 1]
};
_multinomial.Eval(inputTensor, outputTensor);
var outTensor = outputTensor.Data as float[,];
for (var ii = 0; ii < batchSize; ii++)
{
actions[ii, actionIndex] = outTensor[ii, 0];
}
}
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
var action = new float[_actionSize.Length];
for (var j = 0; j < _actionSize.Length; j++)
{
action[j] = actions[agentIndex, j];
}
agent.UpdateVectorAction(action);
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Memory output tensor. Tensor is assumed to contain the new
/// memory data of the agents in the batch.
/// </summary>
public class MemoryOutputApplier : TensorApplier.Applier
{
public void Apply(Tensor tensor, Dictionary<Agent, AgentInfo> agentInfo)
{
var tensorDataMemory = tensor.Data as float[,];
var agentIndex = 0;
var memorySize = tensor.Shape[1];
foreach (var agent in agentInfo.Keys)
{
var memory = new List<float>();
for (var j = 0; j < memorySize; j++)
{
memory.Add(tensorDataMemory[agentIndex, j]);
}
agent.UpdateMemoriesAction(memory);
agentIndex++;
}
}
}
/// <summary>
/// The Applier for the Value Estimate output tensor. Tensor is assumed to contain the
/// value estimates of the agents in the batch.
/// </summary>
public class ValueEstimateApplier : TensorApplier.Applier
{
public void Apply(Tensor tensor, Dictionary<Agent, AgentInfo> agentInfo)
{
var tensorDataValue = tensor.Data as float[,];
var agentIndex = 0;
foreach (var agent in agentInfo.Keys)
{
agent.UpdateValueAction(tensorDataValue[agentIndex, 0]);
agentIndex++;
}
}
}
}