Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

198 行
6.8 KiB

import os
import yaml
from typing import Any, Dict, TextIO
import logging
from mlagents.trainers.meta_curriculum import MetaCurriculum
from mlagents.trainers.exception import TrainerConfigError
from mlagents.trainers.trainer import Trainer
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.sac.trainer import SACTrainer
from mlagents.trainers.ghost.trainer import GhostTrainer
from mlagents.trainers.ghost.controller import GhostController
logger = logging.getLogger("mlagents.trainers")
class TrainerFactory:
def __init__(
self,
trainer_config: Any,
summaries_dir: str,
run_id: str,
model_path: str,
keep_checkpoints: int,
train_model: bool,
load_model: bool,
seed: int,
meta_curriculum: MetaCurriculum = None,
multi_gpu: bool = False,
):
self.trainer_config = trainer_config
self.summaries_dir = summaries_dir
self.run_id = run_id
self.model_path = model_path
self.keep_checkpoints = keep_checkpoints
self.train_model = train_model
self.load_model = load_model
self.seed = seed
self.meta_curriculum = meta_curriculum
self.multi_gpu = multi_gpu
self.ghost_controller = GhostController()
def generate(self, brain_name: str) -> Trainer:
return initialize_trainer(
self.trainer_config,
brain_name,
self.summaries_dir,
self.run_id,
self.model_path,
self.keep_checkpoints,
self.train_model,
self.load_model,
self.ghost_controller,
self.seed,
self.meta_curriculum,
self.multi_gpu,
)
def initialize_trainer(
trainer_config: Any,
brain_name: str,
summaries_dir: str,
run_id: str,
model_path: str,
keep_checkpoints: int,
train_model: bool,
load_model: bool,
ghost_controller: GhostController,
seed: int,
meta_curriculum: MetaCurriculum = None,
multi_gpu: bool = False,
) -> Trainer:
"""
Initializes a trainer given a provided trainer configuration and brain parameters, as well as
some general training session options.
:param trainer_config: Original trainer configuration loaded from YAML
:param brain_name: Name of the brain to be associated with trainer
:param summaries_dir: Directory to store trainer summary statistics
:param run_id: Run ID to associate with this training run
:param model_path: Path to save the model
:param keep_checkpoints: How many model checkpoints to keep
:param train_model: Whether to train the model (vs. run inference)
:param load_model: Whether to load the model or randomly initialize
:param ghost_controller: The object that coordinates ghost trainers
:param seed: The random seed to use
:param meta_curriculum: Optional meta_curriculum, used to determine a reward buffer length for PPOTrainer
:return:
"""
if "default" not in trainer_config and brain_name not in trainer_config:
raise TrainerConfigError(
f'Trainer config must have either a "default" section, or a section for the brain name ({brain_name}). '
"See config/trainer_config.yaml for an example."
)
trainer_parameters = trainer_config.get("default", {}).copy()
trainer_parameters["summary_path"] = str(run_id) + "_" + brain_name
trainer_parameters["model_path"] = "{basedir}/{name}".format(
basedir=model_path, name=brain_name
)
trainer_parameters["keep_checkpoints"] = keep_checkpoints
if brain_name in trainer_config:
_brain_key: Any = brain_name
while not isinstance(trainer_config[_brain_key], dict):
_brain_key = trainer_config[_brain_key]
trainer_parameters.update(trainer_config[_brain_key])
min_lesson_length = 1
if meta_curriculum:
if brain_name in meta_curriculum.brains_to_curricula:
min_lesson_length = meta_curriculum.brains_to_curricula[
brain_name
].min_lesson_length
else:
logger.warning(
f"Metacurriculum enabled, but no curriculum for brain {brain_name}. "
f"Brains with curricula: {meta_curriculum.brains_to_curricula.keys()}. "
)
trainer: Trainer = None # type: ignore # will be set to one of these, or raise
if "trainer" not in trainer_parameters:
raise TrainerConfigError(
f'The "trainer" key must be set in your trainer config for brain {brain_name} (or the default brain).'
)
trainer_type = trainer_parameters["trainer"]
if trainer_type == "offline_bc":
raise UnityTrainerException(
"The offline_bc trainer has been removed. To train with demonstrations, "
"please use a PPO or SAC trainer with the GAIL Reward Signal and/or the "
"Behavioral Cloning feature enabled."
)
elif trainer_type == "ppo":
trainer = PPOTrainer(
brain_name,
min_lesson_length,
trainer_parameters,
train_model,
load_model,
seed,
run_id,
)
elif trainer_type == "sac":
trainer = SACTrainer(
brain_name,
min_lesson_length,
trainer_parameters,
train_model,
load_model,
seed,
run_id,
)
else:
raise TrainerConfigError(
f'The trainer config contains an unknown trainer type "{trainer_type}" for brain {brain_name}'
)
if "self_play" in trainer_parameters:
trainer = GhostTrainer(
trainer,
brain_name,
ghost_controller,
min_lesson_length,
trainer_parameters,
train_model,
run_id,
)
return trainer
def load_config(config_path: str) -> Dict[str, Any]:
try:
with open(config_path) as data_file:
return _load_config(data_file)
except IOError:
abs_path = os.path.abspath(config_path)
raise TrainerConfigError(f"Config file could not be found at {abs_path}.")
except UnicodeDecodeError:
raise TrainerConfigError(
f"There was an error decoding Config file from {config_path}. "
f"Make sure your file is save using UTF-8"
)
def _load_config(fp: TextIO) -> Dict[str, Any]:
"""
Load the yaml config from the file-like object.
"""
try:
return yaml.safe_load(fp)
except yaml.parser.ParserError as e:
raise TrainerConfigError(
"Error parsing yaml file. Please check for formatting errors. "
"A tool such as http://www.yamllint.com/ can be helpful with this."
) from e