import os import yaml from typing import Any, Dict, TextIO import logging from mlagents.trainers.meta_curriculum import MetaCurriculum from mlagents.trainers.exception import TrainerConfigError from mlagents.trainers.trainer import Trainer from mlagents.trainers.exception import UnityTrainerException from mlagents.trainers.ppo.trainer import PPOTrainer from mlagents.trainers.sac.trainer import SACTrainer from mlagents.trainers.ghost.trainer import GhostTrainer from mlagents.trainers.ghost.controller import GhostController logger = logging.getLogger("mlagents.trainers") class TrainerFactory: def __init__( self, trainer_config: Any, summaries_dir: str, run_id: str, model_path: str, keep_checkpoints: int, train_model: bool, load_model: bool, seed: int, meta_curriculum: MetaCurriculum = None, multi_gpu: bool = False, ): self.trainer_config = trainer_config self.summaries_dir = summaries_dir self.run_id = run_id self.model_path = model_path self.keep_checkpoints = keep_checkpoints self.train_model = train_model self.load_model = load_model self.seed = seed self.meta_curriculum = meta_curriculum self.multi_gpu = multi_gpu self.ghost_controller = GhostController() def generate(self, brain_name: str) -> Trainer: return initialize_trainer( self.trainer_config, brain_name, self.summaries_dir, self.run_id, self.model_path, self.keep_checkpoints, self.train_model, self.load_model, self.ghost_controller, self.seed, self.meta_curriculum, self.multi_gpu, ) def initialize_trainer( trainer_config: Any, brain_name: str, summaries_dir: str, run_id: str, model_path: str, keep_checkpoints: int, train_model: bool, load_model: bool, ghost_controller: GhostController, seed: int, meta_curriculum: MetaCurriculum = None, multi_gpu: bool = False, ) -> Trainer: """ Initializes a trainer given a provided trainer configuration and brain parameters, as well as some general training session options. :param trainer_config: Original trainer configuration loaded from YAML :param brain_name: Name of the brain to be associated with trainer :param summaries_dir: Directory to store trainer summary statistics :param run_id: Run ID to associate with this training run :param model_path: Path to save the model :param keep_checkpoints: How many model checkpoints to keep :param train_model: Whether to train the model (vs. run inference) :param load_model: Whether to load the model or randomly initialize :param ghost_controller: The object that coordinates ghost trainers :param seed: The random seed to use :param meta_curriculum: Optional meta_curriculum, used to determine a reward buffer length for PPOTrainer :return: """ if "default" not in trainer_config and brain_name not in trainer_config: raise TrainerConfigError( f'Trainer config must have either a "default" section, or a section for the brain name ({brain_name}). ' "See config/trainer_config.yaml for an example." ) trainer_parameters = trainer_config.get("default", {}).copy() trainer_parameters["summary_path"] = str(run_id) + "_" + brain_name trainer_parameters["model_path"] = "{basedir}/{name}".format( basedir=model_path, name=brain_name ) trainer_parameters["keep_checkpoints"] = keep_checkpoints if brain_name in trainer_config: _brain_key: Any = brain_name while not isinstance(trainer_config[_brain_key], dict): _brain_key = trainer_config[_brain_key] trainer_parameters.update(trainer_config[_brain_key]) min_lesson_length = 1 if meta_curriculum: if brain_name in meta_curriculum.brains_to_curricula: min_lesson_length = meta_curriculum.brains_to_curricula[ brain_name ].min_lesson_length else: logger.warning( f"Metacurriculum enabled, but no curriculum for brain {brain_name}. " f"Brains with curricula: {meta_curriculum.brains_to_curricula.keys()}. " ) trainer: Trainer = None # type: ignore # will be set to one of these, or raise if "trainer" not in trainer_parameters: raise TrainerConfigError( f'The "trainer" key must be set in your trainer config for brain {brain_name} (or the default brain).' ) trainer_type = trainer_parameters["trainer"] if trainer_type == "offline_bc": raise UnityTrainerException( "The offline_bc trainer has been removed. To train with demonstrations, " "please use a PPO or SAC trainer with the GAIL Reward Signal and/or the " "Behavioral Cloning feature enabled." ) elif trainer_type == "ppo": trainer = PPOTrainer( brain_name, min_lesson_length, trainer_parameters, train_model, load_model, seed, run_id, ) elif trainer_type == "sac": trainer = SACTrainer( brain_name, min_lesson_length, trainer_parameters, train_model, load_model, seed, run_id, ) else: raise TrainerConfigError( f'The trainer config contains an unknown trainer type "{trainer_type}" for brain {brain_name}' ) if "self_play" in trainer_parameters: trainer = GhostTrainer( trainer, brain_name, ghost_controller, min_lesson_length, trainer_parameters, train_model, run_id, ) return trainer def load_config(config_path: str) -> Dict[str, Any]: try: with open(config_path) as data_file: return _load_config(data_file) except IOError: abs_path = os.path.abspath(config_path) raise TrainerConfigError(f"Config file could not be found at {abs_path}.") except UnicodeDecodeError: raise TrainerConfigError( f"There was an error decoding Config file from {config_path}. " f"Make sure your file is save using UTF-8" ) def _load_config(fp: TextIO) -> Dict[str, Any]: """ Load the yaml config from the file-like object. """ try: return yaml.safe_load(fp) except yaml.parser.ParserError as e: raise TrainerConfigError( "Error parsing yaml file. Please check for formatting errors. " "A tool such as http://www.yamllint.com/ can be helpful with this." ) from e