Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

257 行
9.4 KiB

using System;
using System.Collections.Generic;
using UnityEngine;
using System.Linq;
using Barracuda;
using MLAgents.InferenceBrain;
using UnityEngine.Profiling;
namespace MLAgents
{
public enum InferenceDevice
{
CPU = 0,
GPU = 1
}
/// <summary>
/// The Learning Brain works differently if you are training it or not.
/// When training your Agents, drag the Learning Brain to the Academy's BroadcastHub and check
/// the checkbox Control. When using a pretrained model, just drag the Model file into the
/// Model property of the Learning Brain.
/// The property model corresponds to the Model currently attached to the Brain. Before
/// being used, a call to ReloadModel is required.
/// When the Learning Brain is not training, it uses a TensorFlow model to make decisions.
/// The Proximal Policy Optimization (PPO) and Behavioral Cloning algorithms included with
/// the ML-Agents SDK produce trained TensorFlow models that you can use with the
/// Learning Brain.
/// </summary>
[CreateAssetMenu(fileName = "NewLearningBrain", menuName = "ML-Agents/Learning Brain")]
public class LearningBrain : Brain
{
private ITensorAllocator _tensorAllocator;
private TensorGenerator _tensorGenerator;
private TensorApplier _tensorApplier;
#if ENABLE_TENSORFLOW
public TextAsset model;
private ModelParamLoader _modelParamLoader;
private TFSharpInferenceEngine _engine;
#else
public NNModel model;
private Model _barracudaModel;
private IWorker _engine;
private bool _verbose = false;
private BarracudaModelParamLoader _modelParamLoader;
private string[] _outputNames;
#endif
[Tooltip("Inference execution device. CPU is the fastest option for most of ML Agents models. " +
"(This field is not applicable for training).")]
public InferenceDevice inferenceDevice = InferenceDevice.CPU;
private IReadOnlyList<TensorProxy> _inferenceInputs;
private IReadOnlyList<TensorProxy> _inferenceOutputs;
[NonSerialized]
private bool _isControlled;
/// <summary>
/// When Called, the brain will be controlled externally. It will not use the
/// model to decide on actions.
/// </summary>
public void SetToControlledExternally()
{
_isControlled = true;
}
/// <inheritdoc />
protected override void Initialize()
{
ReloadModel();
}
/// <summary>
/// Initializes the Brain with the Model that it will use when selecting actions for
/// the agents
/// </summary>
/// <param name="seed"> The seed that will be used to initialize the RandomNormal
/// and Multinomial obsjects used when running inference.</param>
/// <exception cref="UnityAgentsException">Throws an error when the model is null
/// </exception>
public void ReloadModel(int seed = 0)
{
if (_tensorAllocator == null)
_tensorAllocator = new TensorCachingAllocator();
#if ENABLE_TENSORFLOW
if (model != null)
{
_engine = new TFSharpInferenceEngine();
_engine.PrepareModel(model.bytes);
}
else
{
_engine = null;
}
_modelParamLoader = ModelParamLoader.GetLoaderAndCheck(_engine, brainParameters);
_inferenceInputs = _modelParamLoader.GetInputTensors();
_inferenceOutputs = _modelParamLoader.GetOutputTensors();
_tensorGenerator = new TensorGenerator(brainParameters, seed, _tensorAllocator);
_tensorApplier = new TensorApplier(brainParameters, seed, _tensorAllocator);
#else
if (model != null)
{
#if BARRACUDA_VERBOSE
_verbose = true;
#endif
D.logEnabled = _verbose;
// Cleanup previous instance
if (_engine != null)
_engine.Dispose();
_barracudaModel = ModelLoader.Load(model.Value);
var executionDevice = inferenceDevice == InferenceDevice.GPU
? BarracudaWorkerFactory.Type.ComputePrecompiled
: BarracudaWorkerFactory.Type.CSharp;
_engine = BarracudaWorkerFactory.CreateWorker(executionDevice, _barracudaModel, _verbose);
}
else
{
_barracudaModel = null;
_engine = null;
}
_modelParamLoader = BarracudaModelParamLoader.GetLoaderAndCheck(_engine, _barracudaModel, brainParameters);
_inferenceInputs = _modelParamLoader.GetInputTensors();
_outputNames = _modelParamLoader.GetOutputNames();
_tensorGenerator = new TensorGenerator(brainParameters, seed, _tensorAllocator, _barracudaModel);
_tensorApplier = new TensorApplier(brainParameters, seed, _tensorAllocator, _barracudaModel);
#endif
}
/// <summary>
/// Return a list of failed checks corresponding to the failed compatibility checks
/// between the Model and the BrainParameters. Note : This does not reload the model.
/// If changes have been made to the BrainParameters or the Model, the model must be
/// reloaded using GiveModel before trying to get the compatibility checks.
/// </summary>
/// <returns> The list of the failed compatibility checks between the Model and the
/// Brain Parameters</returns>
public IEnumerable<string> GetModelFailedChecks()
{
#if ENABLE_TENSORFLOW
return (_modelParamLoader != null) ? _modelParamLoader.GetChecks() : new List<string>();
#else
return (_modelParamLoader != null) ? _modelParamLoader.GetChecks() : new List<string>();
#endif
}
/// <inheritdoc />
protected override void DecideAction()
{
if (_isControlled)
{
agentInfos.Clear();
return;
}
var currentBatchSize = agentInfos.Count();
if (currentBatchSize == 0)
{
return;
}
Profiler.BeginSample("LearningBrain.DecideAction");
#if ENABLE_TENSORFLOW
if (_engine == null)
{
Debug.LogError($"No model was present for the Brain {name}.");
return;
}
// Prepare the input tensors to be feed into the engine
_tensorGenerator.GenerateTensors(_inferenceInputs, currentBatchSize, agentInfos);
// Prepare the output tensors to be feed into the engine
_tensorGenerator.GenerateTensors(_inferenceOutputs, currentBatchSize, agentInfos);
// Execute the Model
Profiler.BeginSample($"MLAgents.{name}.ExecuteGraph");
_engine.ExecuteGraph(_inferenceInputs, _inferenceOutputs);
Profiler.EndSample();
// Update the outputs
_tensorApplier.ApplyTensors(_inferenceOutputs, agentInfos);
#else
if (_engine == null)
{
Debug.LogError($"No model was present for the Brain {name}.");
return;
}
Profiler.BeginSample($"MLAgents.{name}.GenerateTensors");
// Prepare the input tensors to be feed into the engine
_tensorGenerator.GenerateTensors(_inferenceInputs, currentBatchSize, agentInfos);
Profiler.EndSample();
Profiler.BeginSample($"MLAgents.{name}.PrepareBarracudaInputs");
var inputs = PrepareBarracudaInputs(_inferenceInputs);
Profiler.EndSample();
// Execute the Model
Profiler.BeginSample($"MLAgents.{name}.ExecuteGraph");
_engine.Execute(inputs);
Profiler.EndSample();
Profiler.BeginSample($"MLAgents.{name}.FetchBarracudaOutputs");
_inferenceOutputs = FetchBarracudaOutputs(_outputNames);
Profiler.EndSample();
Profiler.BeginSample($"MLAgents.{name}.ApplyTensors");
// Update the outputs
_tensorApplier.ApplyTensors(_inferenceOutputs, agentInfos);
Profiler.EndSample();
#endif
agentInfos.Clear();
Profiler.EndSample();
}
#if !ENABLE_TENSORFLOW
protected Dictionary<string, Tensor> PrepareBarracudaInputs(IEnumerable<TensorProxy> infInputs)
{
var inputs = new Dictionary<string, Tensor>();
foreach (var inp in _inferenceInputs)
{
inputs[inp.name] = inp.data;
}
return inputs;
}
protected List<TensorProxy> FetchBarracudaOutputs(string[] names)
{
var outputs = new List<TensorProxy>();
foreach (var name in names)
{
var outp = _engine.Peek(name);
outputs.Add(TensorUtils.TensorProxyFromBarracuda(outp, name));
}
return outputs;
}
#endif
public void OnDisable()
{
#if !ENABLE_TENSORFLOW
_engine?.Dispose();
#endif
_tensorAllocator?.Reset(false);
}
}
}