您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
257 行
9.4 KiB
257 行
9.4 KiB
using System;
|
|
using System.Collections.Generic;
|
|
using UnityEngine;
|
|
using System.Linq;
|
|
using Barracuda;
|
|
using MLAgents.InferenceBrain;
|
|
using UnityEngine.Profiling;
|
|
|
|
namespace MLAgents
|
|
{
|
|
public enum InferenceDevice
|
|
{
|
|
CPU = 0,
|
|
GPU = 1
|
|
}
|
|
|
|
/// <summary>
|
|
/// The Learning Brain works differently if you are training it or not.
|
|
/// When training your Agents, drag the Learning Brain to the Academy's BroadcastHub and check
|
|
/// the checkbox Control. When using a pretrained model, just drag the Model file into the
|
|
/// Model property of the Learning Brain.
|
|
/// The property model corresponds to the Model currently attached to the Brain. Before
|
|
/// being used, a call to ReloadModel is required.
|
|
/// When the Learning Brain is not training, it uses a TensorFlow model to make decisions.
|
|
/// The Proximal Policy Optimization (PPO) and Behavioral Cloning algorithms included with
|
|
/// the ML-Agents SDK produce trained TensorFlow models that you can use with the
|
|
/// Learning Brain.
|
|
/// </summary>
|
|
[CreateAssetMenu(fileName = "NewLearningBrain", menuName = "ML-Agents/Learning Brain")]
|
|
public class LearningBrain : Brain
|
|
{
|
|
private ITensorAllocator _tensorAllocator;
|
|
private TensorGenerator _tensorGenerator;
|
|
private TensorApplier _tensorApplier;
|
|
#if ENABLE_TENSORFLOW
|
|
public TextAsset model;
|
|
private ModelParamLoader _modelParamLoader;
|
|
private TFSharpInferenceEngine _engine;
|
|
#else
|
|
public NNModel model;
|
|
private Model _barracudaModel;
|
|
private IWorker _engine;
|
|
private bool _verbose = false;
|
|
|
|
private BarracudaModelParamLoader _modelParamLoader;
|
|
private string[] _outputNames;
|
|
#endif
|
|
|
|
[Tooltip("Inference execution device. CPU is the fastest option for most of ML Agents models. " +
|
|
"(This field is not applicable for training).")]
|
|
public InferenceDevice inferenceDevice = InferenceDevice.CPU;
|
|
|
|
private IReadOnlyList<TensorProxy> _inferenceInputs;
|
|
private IReadOnlyList<TensorProxy> _inferenceOutputs;
|
|
|
|
[NonSerialized]
|
|
private bool _isControlled;
|
|
|
|
/// <summary>
|
|
/// When Called, the brain will be controlled externally. It will not use the
|
|
/// model to decide on actions.
|
|
/// </summary>
|
|
public void SetToControlledExternally()
|
|
{
|
|
_isControlled = true;
|
|
}
|
|
|
|
/// <inheritdoc />
|
|
protected override void Initialize()
|
|
{
|
|
ReloadModel();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes the Brain with the Model that it will use when selecting actions for
|
|
/// the agents
|
|
/// </summary>
|
|
/// <param name="seed"> The seed that will be used to initialize the RandomNormal
|
|
/// and Multinomial obsjects used when running inference.</param>
|
|
/// <exception cref="UnityAgentsException">Throws an error when the model is null
|
|
/// </exception>
|
|
public void ReloadModel(int seed = 0)
|
|
{
|
|
if (_tensorAllocator == null)
|
|
_tensorAllocator = new TensorCachingAllocator();
|
|
|
|
#if ENABLE_TENSORFLOW
|
|
if (model != null)
|
|
{
|
|
_engine = new TFSharpInferenceEngine();
|
|
_engine.PrepareModel(model.bytes);
|
|
}
|
|
else
|
|
{
|
|
_engine = null;
|
|
}
|
|
_modelParamLoader = ModelParamLoader.GetLoaderAndCheck(_engine, brainParameters);
|
|
_inferenceInputs = _modelParamLoader.GetInputTensors();
|
|
_inferenceOutputs = _modelParamLoader.GetOutputTensors();
|
|
_tensorGenerator = new TensorGenerator(brainParameters, seed, _tensorAllocator);
|
|
_tensorApplier = new TensorApplier(brainParameters, seed, _tensorAllocator);
|
|
#else
|
|
if (model != null)
|
|
{
|
|
#if BARRACUDA_VERBOSE
|
|
_verbose = true;
|
|
#endif
|
|
|
|
D.logEnabled = _verbose;
|
|
|
|
// Cleanup previous instance
|
|
if (_engine != null)
|
|
_engine.Dispose();
|
|
|
|
_barracudaModel = ModelLoader.Load(model.Value);
|
|
var executionDevice = inferenceDevice == InferenceDevice.GPU
|
|
? BarracudaWorkerFactory.Type.ComputePrecompiled
|
|
: BarracudaWorkerFactory.Type.CSharp;
|
|
|
|
_engine = BarracudaWorkerFactory.CreateWorker(executionDevice, _barracudaModel, _verbose);
|
|
}
|
|
else
|
|
{
|
|
_barracudaModel = null;
|
|
_engine = null;
|
|
}
|
|
|
|
_modelParamLoader = BarracudaModelParamLoader.GetLoaderAndCheck(_engine, _barracudaModel, brainParameters);
|
|
_inferenceInputs = _modelParamLoader.GetInputTensors();
|
|
_outputNames = _modelParamLoader.GetOutputNames();
|
|
_tensorGenerator = new TensorGenerator(brainParameters, seed, _tensorAllocator, _barracudaModel);
|
|
_tensorApplier = new TensorApplier(brainParameters, seed, _tensorAllocator, _barracudaModel);
|
|
#endif
|
|
}
|
|
|
|
/// <summary>
|
|
/// Return a list of failed checks corresponding to the failed compatibility checks
|
|
/// between the Model and the BrainParameters. Note : This does not reload the model.
|
|
/// If changes have been made to the BrainParameters or the Model, the model must be
|
|
/// reloaded using GiveModel before trying to get the compatibility checks.
|
|
/// </summary>
|
|
/// <returns> The list of the failed compatibility checks between the Model and the
|
|
/// Brain Parameters</returns>
|
|
public IEnumerable<string> GetModelFailedChecks()
|
|
{
|
|
|
|
#if ENABLE_TENSORFLOW
|
|
return (_modelParamLoader != null) ? _modelParamLoader.GetChecks() : new List<string>();
|
|
#else
|
|
return (_modelParamLoader != null) ? _modelParamLoader.GetChecks() : new List<string>();
|
|
#endif
|
|
}
|
|
|
|
/// <inheritdoc />
|
|
protected override void DecideAction()
|
|
{
|
|
if (_isControlled)
|
|
{
|
|
agentInfos.Clear();
|
|
return;
|
|
}
|
|
var currentBatchSize = agentInfos.Count();
|
|
if (currentBatchSize == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
Profiler.BeginSample("LearningBrain.DecideAction");
|
|
|
|
#if ENABLE_TENSORFLOW
|
|
if (_engine == null)
|
|
{
|
|
Debug.LogError($"No model was present for the Brain {name}.");
|
|
return;
|
|
}
|
|
// Prepare the input tensors to be feed into the engine
|
|
_tensorGenerator.GenerateTensors(_inferenceInputs, currentBatchSize, agentInfos);
|
|
|
|
// Prepare the output tensors to be feed into the engine
|
|
_tensorGenerator.GenerateTensors(_inferenceOutputs, currentBatchSize, agentInfos);
|
|
|
|
// Execute the Model
|
|
Profiler.BeginSample($"MLAgents.{name}.ExecuteGraph");
|
|
_engine.ExecuteGraph(_inferenceInputs, _inferenceOutputs);
|
|
Profiler.EndSample();
|
|
|
|
// Update the outputs
|
|
_tensorApplier.ApplyTensors(_inferenceOutputs, agentInfos);
|
|
#else
|
|
if (_engine == null)
|
|
{
|
|
Debug.LogError($"No model was present for the Brain {name}.");
|
|
return;
|
|
}
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.GenerateTensors");
|
|
// Prepare the input tensors to be feed into the engine
|
|
_tensorGenerator.GenerateTensors(_inferenceInputs, currentBatchSize, agentInfos);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.PrepareBarracudaInputs");
|
|
var inputs = PrepareBarracudaInputs(_inferenceInputs);
|
|
Profiler.EndSample();
|
|
|
|
// Execute the Model
|
|
Profiler.BeginSample($"MLAgents.{name}.ExecuteGraph");
|
|
_engine.Execute(inputs);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.FetchBarracudaOutputs");
|
|
_inferenceOutputs = FetchBarracudaOutputs(_outputNames);
|
|
Profiler.EndSample();
|
|
|
|
Profiler.BeginSample($"MLAgents.{name}.ApplyTensors");
|
|
// Update the outputs
|
|
_tensorApplier.ApplyTensors(_inferenceOutputs, agentInfos);
|
|
Profiler.EndSample();
|
|
#endif
|
|
agentInfos.Clear();
|
|
Profiler.EndSample();
|
|
}
|
|
|
|
#if !ENABLE_TENSORFLOW
|
|
protected Dictionary<string, Tensor> PrepareBarracudaInputs(IEnumerable<TensorProxy> infInputs)
|
|
{
|
|
var inputs = new Dictionary<string, Tensor>();
|
|
foreach (var inp in _inferenceInputs)
|
|
{
|
|
inputs[inp.name] = inp.data;
|
|
}
|
|
|
|
return inputs;
|
|
}
|
|
|
|
protected List<TensorProxy> FetchBarracudaOutputs(string[] names)
|
|
{
|
|
var outputs = new List<TensorProxy>();
|
|
foreach (var name in names)
|
|
{
|
|
var outp = _engine.Peek(name);
|
|
outputs.Add(TensorUtils.TensorProxyFromBarracuda(outp, name));
|
|
}
|
|
|
|
return outputs;
|
|
}
|
|
#endif
|
|
|
|
public void OnDisable()
|
|
{
|
|
#if !ENABLE_TENSORFLOW
|
|
_engine?.Dispose();
|
|
#endif
|
|
_tensorAllocator?.Reset(false);
|
|
}
|
|
|
|
}
|
|
}
|