using System; using System.Collections.Generic; using UnityEngine; using System.Linq; using Barracuda; using MLAgents.InferenceBrain; using UnityEngine.Profiling; namespace MLAgents { public enum InferenceDevice { CPU = 0, GPU = 1 } /// /// The Learning Brain works differently if you are training it or not. /// When training your Agents, drag the Learning Brain to the Academy's BroadcastHub and check /// the checkbox Control. When using a pretrained model, just drag the Model file into the /// Model property of the Learning Brain. /// The property model corresponds to the Model currently attached to the Brain. Before /// being used, a call to ReloadModel is required. /// When the Learning Brain is not training, it uses a TensorFlow model to make decisions. /// The Proximal Policy Optimization (PPO) and Behavioral Cloning algorithms included with /// the ML-Agents SDK produce trained TensorFlow models that you can use with the /// Learning Brain. /// [CreateAssetMenu(fileName = "NewLearningBrain", menuName = "ML-Agents/Learning Brain")] public class LearningBrain : Brain { private ITensorAllocator _tensorAllocator; private TensorGenerator _tensorGenerator; private TensorApplier _tensorApplier; #if ENABLE_TENSORFLOW public TextAsset model; private ModelParamLoader _modelParamLoader; private TFSharpInferenceEngine _engine; #else public NNModel model; private Model _barracudaModel; private IWorker _engine; private bool _verbose = false; private BarracudaModelParamLoader _modelParamLoader; private string[] _outputNames; #endif [Tooltip("Inference execution device. CPU is the fastest option for most of ML Agents models. " + "(This field is not applicable for training).")] public InferenceDevice inferenceDevice = InferenceDevice.CPU; private IReadOnlyList _inferenceInputs; private IReadOnlyList _inferenceOutputs; [NonSerialized] private bool _isControlled; /// /// When Called, the brain will be controlled externally. It will not use the /// model to decide on actions. /// public void SetToControlledExternally() { _isControlled = true; } /// protected override void Initialize() { ReloadModel(); } /// /// Initializes the Brain with the Model that it will use when selecting actions for /// the agents /// /// The seed that will be used to initialize the RandomNormal /// and Multinomial obsjects used when running inference. /// Throws an error when the model is null /// public void ReloadModel(int seed = 0) { if (_tensorAllocator == null) _tensorAllocator = new TensorCachingAllocator(); #if ENABLE_TENSORFLOW if (model != null) { _engine = new TFSharpInferenceEngine(); _engine.PrepareModel(model.bytes); } else { _engine = null; } _modelParamLoader = ModelParamLoader.GetLoaderAndCheck(_engine, brainParameters); _inferenceInputs = _modelParamLoader.GetInputTensors(); _inferenceOutputs = _modelParamLoader.GetOutputTensors(); _tensorGenerator = new TensorGenerator(brainParameters, seed, _tensorAllocator); _tensorApplier = new TensorApplier(brainParameters, seed, _tensorAllocator); #else if (model != null) { #if BARRACUDA_VERBOSE _verbose = true; #endif D.logEnabled = _verbose; // Cleanup previous instance if (_engine != null) _engine.Dispose(); _barracudaModel = ModelLoader.Load(model.Value); var executionDevice = inferenceDevice == InferenceDevice.GPU ? BarracudaWorkerFactory.Type.ComputePrecompiled : BarracudaWorkerFactory.Type.CSharp; _engine = BarracudaWorkerFactory.CreateWorker(executionDevice, _barracudaModel, _verbose); } else { _barracudaModel = null; _engine = null; } _modelParamLoader = BarracudaModelParamLoader.GetLoaderAndCheck(_engine, _barracudaModel, brainParameters); _inferenceInputs = _modelParamLoader.GetInputTensors(); _outputNames = _modelParamLoader.GetOutputNames(); _tensorGenerator = new TensorGenerator(brainParameters, seed, _tensorAllocator, _barracudaModel); _tensorApplier = new TensorApplier(brainParameters, seed, _tensorAllocator, _barracudaModel); #endif } /// /// Return a list of failed checks corresponding to the failed compatibility checks /// between the Model and the BrainParameters. Note : This does not reload the model. /// If changes have been made to the BrainParameters or the Model, the model must be /// reloaded using GiveModel before trying to get the compatibility checks. /// /// The list of the failed compatibility checks between the Model and the /// Brain Parameters public IEnumerable GetModelFailedChecks() { #if ENABLE_TENSORFLOW return (_modelParamLoader != null) ? _modelParamLoader.GetChecks() : new List(); #else return (_modelParamLoader != null) ? _modelParamLoader.GetChecks() : new List(); #endif } /// protected override void DecideAction() { if (_isControlled) { agentInfos.Clear(); return; } var currentBatchSize = agentInfos.Count(); if (currentBatchSize == 0) { return; } Profiler.BeginSample("LearningBrain.DecideAction"); #if ENABLE_TENSORFLOW if (_engine == null) { Debug.LogError($"No model was present for the Brain {name}."); return; } // Prepare the input tensors to be feed into the engine _tensorGenerator.GenerateTensors(_inferenceInputs, currentBatchSize, agentInfos); // Prepare the output tensors to be feed into the engine _tensorGenerator.GenerateTensors(_inferenceOutputs, currentBatchSize, agentInfos); // Execute the Model Profiler.BeginSample($"MLAgents.{name}.ExecuteGraph"); _engine.ExecuteGraph(_inferenceInputs, _inferenceOutputs); Profiler.EndSample(); // Update the outputs _tensorApplier.ApplyTensors(_inferenceOutputs, agentInfos); #else if (_engine == null) { Debug.LogError($"No model was present for the Brain {name}."); return; } Profiler.BeginSample($"MLAgents.{name}.GenerateTensors"); // Prepare the input tensors to be feed into the engine _tensorGenerator.GenerateTensors(_inferenceInputs, currentBatchSize, agentInfos); Profiler.EndSample(); Profiler.BeginSample($"MLAgents.{name}.PrepareBarracudaInputs"); var inputs = PrepareBarracudaInputs(_inferenceInputs); Profiler.EndSample(); // Execute the Model Profiler.BeginSample($"MLAgents.{name}.ExecuteGraph"); _engine.Execute(inputs); Profiler.EndSample(); Profiler.BeginSample($"MLAgents.{name}.FetchBarracudaOutputs"); _inferenceOutputs = FetchBarracudaOutputs(_outputNames); Profiler.EndSample(); Profiler.BeginSample($"MLAgents.{name}.ApplyTensors"); // Update the outputs _tensorApplier.ApplyTensors(_inferenceOutputs, agentInfos); Profiler.EndSample(); #endif agentInfos.Clear(); Profiler.EndSample(); } #if !ENABLE_TENSORFLOW protected Dictionary PrepareBarracudaInputs(IEnumerable infInputs) { var inputs = new Dictionary(); foreach (var inp in _inferenceInputs) { inputs[inp.name] = inp.data; } return inputs; } protected List FetchBarracudaOutputs(string[] names) { var outputs = new List(); foreach (var name in names) { var outp = _engine.Peek(name); outputs.Add(TensorUtils.TensorProxyFromBarracuda(outp, name)); } return outputs; } #endif public void OnDisable() { #if !ENABLE_TENSORFLOW _engine?.Dispose(); #endif _tensorAllocator?.Reset(false); } } }