Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

73 行
3.8 KiB

import logging
import tensorflow as tf
from unitytrainers.models import LearningModel
logger = logging.getLogger("unityagents")
class PPOModel(LearningModel):
def __init__(self, brain, lr=1e-4, h_size=128, epsilon=0.2, beta=1e-3, max_step=5e6,
normalize=False, use_recurrent=False, num_layers=2, m_size=None):
"""
Takes a Unity environment and model-specific hyper-parameters and returns the
appropriate PPO agent model for the environment.
:param brain: BrainInfo used to generate specific network graph.
:param lr: Learning rate.
:param h_size: Size of hidden layers/
:param epsilon: Value for policy-divergence threshold.
:param beta: Strength of entropy regularization.
:return: a sub-class of PPOAgent tailored to the environment.
:param max_step: Total number of training steps.
:param normalize: Whether to normalize vector observation input.
:param use_recurrent: Whether to use an LSTM layer in the network.
:param num_layers Number of hidden layers between encoded input and policy & value layers
:param m_size: Size of brain memory.
"""
LearningModel.__init__(self, m_size, normalize, use_recurrent, brain)
if num_layers < 1:
num_layers = 1
self.last_reward, self.new_reward, self.update_reward = self.create_reward_encoder()
if brain.action_space_type == "continuous":
self.create_cc_actor_critic(h_size, num_layers)
else:
self.create_dc_actor_critic(h_size, num_layers)
self.create_ppo_optimizer(self.probs, self.old_probs, self.value,
self.entropy, beta, epsilon, lr, max_step)
@staticmethod
def create_reward_encoder():
"""Creates TF ops to track and increment recent average cumulative reward."""
last_reward = tf.Variable(0, name="last_reward", trainable=False, dtype=tf.float32)
new_reward = tf.placeholder(shape=[], dtype=tf.float32, name='new_reward')
update_reward = tf.assign(last_reward, new_reward)
return last_reward, new_reward, update_reward
def create_ppo_optimizer(self, probs, old_probs, value, entropy, beta, epsilon, lr, max_step):
"""
Creates training-specific Tensorflow ops for PPO models.
:param probs: Current policy probabilities
:param old_probs: Past policy probabilities
:param value: Current value estimate
:param beta: Entropy regularization strength
:param entropy: Current policy entropy
:param epsilon: Value for policy-divergence threshold
:param lr: Learning rate
:param max_step: Total number of training steps.
"""
self.returns_holder = tf.placeholder(shape=[None], dtype=tf.float32, name='discounted_rewards')
self.advantage = tf.placeholder(shape=[None, 1], dtype=tf.float32, name='advantages')
self.learning_rate = tf.train.polynomial_decay(lr, self.global_step, max_step, 1e-10, power=1.0)
decay_epsilon = tf.train.polynomial_decay(epsilon, self.global_step, max_step, 0.1, power=1.0)
decay_beta = tf.train.polynomial_decay(beta, self.global_step, max_step, 1e-5, power=1.0)
optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
r_theta = probs / (old_probs + 1e-10)
p_opt_a = r_theta * self.advantage
p_opt_b = tf.clip_by_value(r_theta, 1 - decay_epsilon, 1 + decay_epsilon) * self.advantage
self.policy_loss = -tf.reduce_mean(tf.minimum(p_opt_a, p_opt_b))
self.value_loss = tf.reduce_mean(tf.squared_difference(self.returns_holder, tf.reduce_sum(value, axis=1)))
self.loss = self.policy_loss + 0.5 * self.value_loss - decay_beta * tf.reduce_mean(entropy)
self.update_batch = optimizer.minimize(self.loss)