import logging import tensorflow as tf from unitytrainers.models import LearningModel logger = logging.getLogger("unityagents") class PPOModel(LearningModel): def __init__(self, brain, lr=1e-4, h_size=128, epsilon=0.2, beta=1e-3, max_step=5e6, normalize=False, use_recurrent=False, num_layers=2, m_size=None): """ Takes a Unity environment and model-specific hyper-parameters and returns the appropriate PPO agent model for the environment. :param brain: BrainInfo used to generate specific network graph. :param lr: Learning rate. :param h_size: Size of hidden layers/ :param epsilon: Value for policy-divergence threshold. :param beta: Strength of entropy regularization. :return: a sub-class of PPOAgent tailored to the environment. :param max_step: Total number of training steps. :param normalize: Whether to normalize vector observation input. :param use_recurrent: Whether to use an LSTM layer in the network. :param num_layers Number of hidden layers between encoded input and policy & value layers :param m_size: Size of brain memory. """ LearningModel.__init__(self, m_size, normalize, use_recurrent, brain) if num_layers < 1: num_layers = 1 self.last_reward, self.new_reward, self.update_reward = self.create_reward_encoder() if brain.action_space_type == "continuous": self.create_cc_actor_critic(h_size, num_layers) else: self.create_dc_actor_critic(h_size, num_layers) self.create_ppo_optimizer(self.probs, self.old_probs, self.value, self.entropy, beta, epsilon, lr, max_step) @staticmethod def create_reward_encoder(): """Creates TF ops to track and increment recent average cumulative reward.""" last_reward = tf.Variable(0, name="last_reward", trainable=False, dtype=tf.float32) new_reward = tf.placeholder(shape=[], dtype=tf.float32, name='new_reward') update_reward = tf.assign(last_reward, new_reward) return last_reward, new_reward, update_reward def create_ppo_optimizer(self, probs, old_probs, value, entropy, beta, epsilon, lr, max_step): """ Creates training-specific Tensorflow ops for PPO models. :param probs: Current policy probabilities :param old_probs: Past policy probabilities :param value: Current value estimate :param beta: Entropy regularization strength :param entropy: Current policy entropy :param epsilon: Value for policy-divergence threshold :param lr: Learning rate :param max_step: Total number of training steps. """ self.returns_holder = tf.placeholder(shape=[None], dtype=tf.float32, name='discounted_rewards') self.advantage = tf.placeholder(shape=[None, 1], dtype=tf.float32, name='advantages') self.learning_rate = tf.train.polynomial_decay(lr, self.global_step, max_step, 1e-10, power=1.0) decay_epsilon = tf.train.polynomial_decay(epsilon, self.global_step, max_step, 0.1, power=1.0) decay_beta = tf.train.polynomial_decay(beta, self.global_step, max_step, 1e-5, power=1.0) optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) r_theta = probs / (old_probs + 1e-10) p_opt_a = r_theta * self.advantage p_opt_b = tf.clip_by_value(r_theta, 1 - decay_epsilon, 1 + decay_epsilon) * self.advantage self.policy_loss = -tf.reduce_mean(tf.minimum(p_opt_a, p_opt_b)) self.value_loss = tf.reduce_mean(tf.squared_difference(self.returns_holder, tf.reduce_sum(value, axis=1))) self.loss = self.policy_loss + 0.5 * self.value_loss - decay_beta * tf.reduce_mean(entropy) self.update_batch = optimizer.minimize(self.loss)