Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

134 行
5.0 KiB

from typing import List, NamedTuple
import numpy as np
from mlagents.trainers.buffer import AgentBuffer
class AgentExperience(NamedTuple):
obs: List[np.ndarray]
reward: float
done: bool
action: np.ndarray
action_probs: np.ndarray
action_pre: np.ndarray # TODO: Remove this
action_mask: np.ndarray
prev_action: np.ndarray
interrupted: bool
memory: np.ndarray
class SplitObservations(NamedTuple):
vector_observations: np.ndarray
visual_observations: List[np.ndarray]
@staticmethod
def from_observations(obs: List[np.ndarray]) -> "SplitObservations":
"""
Divides a List of numpy arrays into a SplitObservations NamedTuple.
This allows you to access the vector and visual observations directly,
without enumerating the list over and over.
:param obs: List of numpy arrays (observation)
:returns: A SplitObservations object.
"""
vis_obs_list: List[np.ndarray] = []
vec_obs_list: List[np.ndarray] = []
last_obs = None
for observation in obs:
# Obs could be batched or single
if len(observation.shape) == 1 or len(observation.shape) == 2:
vec_obs_list.append(observation)
if len(observation.shape) == 3 or len(observation.shape) == 4:
vis_obs_list.append(observation)
last_obs = observation
if last_obs is not None:
is_batched = len(last_obs.shape) == 2 or len(last_obs.shape) == 4
if is_batched:
vec_obs = (
np.concatenate(vec_obs_list, axis=1)
if len(vec_obs_list) > 0
else np.zeros((last_obs.shape[0], 0), dtype=np.float32)
)
else:
vec_obs = (
np.concatenate(vec_obs_list, axis=0)
if len(vec_obs_list) > 0
else np.array([], dtype=np.float32)
)
else:
vec_obs = []
return SplitObservations(
vector_observations=vec_obs, visual_observations=vis_obs_list
)
class Trajectory(NamedTuple):
steps: List[AgentExperience]
next_obs: List[
np.ndarray
] # Observation following the trajectory, for bootstrapping
agent_id: str
behavior_id: str
def to_agentbuffer(self) -> AgentBuffer:
"""
Converts a Trajectory to an AgentBuffer
:param trajectory: A Trajectory
:returns: AgentBuffer. Note that the length of the AgentBuffer will be one
less than the trajectory, as the next observation need to be populated from the last
step of the trajectory.
"""
agent_buffer_trajectory = AgentBuffer()
curr_obs = self.steps[0].obs
for step, exp in enumerate(self.steps):
if step < len(self.steps) - 1:
next_obs = self.steps[step + 1].obs
else:
next_obs = self.next_obs
agent_buffer_trajectory["obs"].append(curr_obs)
agent_buffer_trajectory["next_obs"].append(next_obs)
if exp.memory is not None:
agent_buffer_trajectory["memory"].append(exp.memory)
agent_buffer_trajectory["masks"].append(1.0)
agent_buffer_trajectory["done"].append(exp.done)
# Add the outputs of the last eval
if exp.action_pre is not None:
actions_pre = exp.action_pre
agent_buffer_trajectory["actions_pre"].append(actions_pre)
# value is a dictionary from name of reward to value estimate of the value head
agent_buffer_trajectory["actions"].append(exp.action)
agent_buffer_trajectory["action_probs"].append(exp.action_probs)
# Store action masks if necessary. Note that 1 means active, while
# in AgentExperience False means active.
if exp.action_mask is not None:
mask = 1 - np.concatenate(exp.action_mask)
agent_buffer_trajectory["action_mask"].append(mask, padding_value=1)
else:
# This should never be needed unless the environment somehow doesn't supply the
# action mask in a discrete space.
agent_buffer_trajectory["action_mask"].append(
np.ones(exp.action_probs.shape, dtype=np.float32), padding_value=1
)
agent_buffer_trajectory["prev_action"].append(exp.prev_action)
agent_buffer_trajectory["environment_rewards"].append(exp.reward)
# Store the next obs as the current
curr_obs = next_obs
return agent_buffer_trajectory
@property
def done_reached(self) -> bool:
"""
Returns true if trajectory is terminated with a Done.
"""
return self.steps[-1].done
@property
def interrupted(self) -> bool:
"""
Returns true if trajectory was terminated because max steps was reached.
"""
return self.steps[-1].interrupted