from typing import List, NamedTuple import numpy as np from mlagents.trainers.buffer import AgentBuffer class AgentExperience(NamedTuple): obs: List[np.ndarray] reward: float done: bool action: np.ndarray action_probs: np.ndarray action_pre: np.ndarray # TODO: Remove this action_mask: np.ndarray prev_action: np.ndarray interrupted: bool memory: np.ndarray class SplitObservations(NamedTuple): vector_observations: np.ndarray visual_observations: List[np.ndarray] @staticmethod def from_observations(obs: List[np.ndarray]) -> "SplitObservations": """ Divides a List of numpy arrays into a SplitObservations NamedTuple. This allows you to access the vector and visual observations directly, without enumerating the list over and over. :param obs: List of numpy arrays (observation) :returns: A SplitObservations object. """ vis_obs_list: List[np.ndarray] = [] vec_obs_list: List[np.ndarray] = [] last_obs = None for observation in obs: # Obs could be batched or single if len(observation.shape) == 1 or len(observation.shape) == 2: vec_obs_list.append(observation) if len(observation.shape) == 3 or len(observation.shape) == 4: vis_obs_list.append(observation) last_obs = observation if last_obs is not None: is_batched = len(last_obs.shape) == 2 or len(last_obs.shape) == 4 if is_batched: vec_obs = ( np.concatenate(vec_obs_list, axis=1) if len(vec_obs_list) > 0 else np.zeros((last_obs.shape[0], 0), dtype=np.float32) ) else: vec_obs = ( np.concatenate(vec_obs_list, axis=0) if len(vec_obs_list) > 0 else np.array([], dtype=np.float32) ) else: vec_obs = [] return SplitObservations( vector_observations=vec_obs, visual_observations=vis_obs_list ) class Trajectory(NamedTuple): steps: List[AgentExperience] next_obs: List[ np.ndarray ] # Observation following the trajectory, for bootstrapping agent_id: str behavior_id: str def to_agentbuffer(self) -> AgentBuffer: """ Converts a Trajectory to an AgentBuffer :param trajectory: A Trajectory :returns: AgentBuffer. Note that the length of the AgentBuffer will be one less than the trajectory, as the next observation need to be populated from the last step of the trajectory. """ agent_buffer_trajectory = AgentBuffer() curr_obs = self.steps[0].obs for step, exp in enumerate(self.steps): if step < len(self.steps) - 1: next_obs = self.steps[step + 1].obs else: next_obs = self.next_obs agent_buffer_trajectory["obs"].append(curr_obs) agent_buffer_trajectory["next_obs"].append(next_obs) if exp.memory is not None: agent_buffer_trajectory["memory"].append(exp.memory) agent_buffer_trajectory["masks"].append(1.0) agent_buffer_trajectory["done"].append(exp.done) # Add the outputs of the last eval if exp.action_pre is not None: actions_pre = exp.action_pre agent_buffer_trajectory["actions_pre"].append(actions_pre) # value is a dictionary from name of reward to value estimate of the value head agent_buffer_trajectory["actions"].append(exp.action) agent_buffer_trajectory["action_probs"].append(exp.action_probs) # Store action masks if necessary. Note that 1 means active, while # in AgentExperience False means active. if exp.action_mask is not None: mask = 1 - np.concatenate(exp.action_mask) agent_buffer_trajectory["action_mask"].append(mask, padding_value=1) else: # This should never be needed unless the environment somehow doesn't supply the # action mask in a discrete space. agent_buffer_trajectory["action_mask"].append( np.ones(exp.action_probs.shape, dtype=np.float32), padding_value=1 ) agent_buffer_trajectory["prev_action"].append(exp.prev_action) agent_buffer_trajectory["environment_rewards"].append(exp.reward) # Store the next obs as the current curr_obs = next_obs return agent_buffer_trajectory @property def done_reached(self) -> bool: """ Returns true if trajectory is terminated with a Done. """ return self.steps[-1].done @property def interrupted(self) -> bool: """ Returns true if trajectory was terminated because max steps was reached. """ return self.steps[-1].interrupted