您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
119 行
5.6 KiB
119 行
5.6 KiB
using System.Collections.Generic;
|
|
using Barracuda;
|
|
|
|
namespace MLAgents.InferenceBrain
|
|
{
|
|
/// <summary>
|
|
/// Mapping between Tensor names and generators.
|
|
/// A TensorGenerator implements a Dictionary of strings (node names) to an Action.
|
|
/// The Action take as argument the tensor, the current batch size and a Dictionary of
|
|
/// Agent to AgentInfo corresponding to the current batch.
|
|
/// Each Generator reshapes and fills the data of the tensor based of the data of the batch.
|
|
/// When the TensorProxy is an Input to the model, the shape of the Tensor will be modified
|
|
/// depending on the current batch size and the data of the Tensor will be filled using the
|
|
/// Dictionary of Agent to AgentInfo.
|
|
/// When the TensorProxy is an Output of the model, only the shape of the Tensor will be
|
|
/// modified using the current batch size. The data will be pre-filled with zeros.
|
|
/// </summary>
|
|
public class TensorGenerator
|
|
{
|
|
public interface IGenerator
|
|
{
|
|
/// <summary>
|
|
/// Modifies the data inside a Tensor according to the information contained in the
|
|
/// AgentInfos contained in the current batch.
|
|
/// </summary>
|
|
/// <param name="tensorProxy"> The tensor the data and shape will be modified</param>
|
|
/// <param name="batchSize"> The number of agents present in the current batch</param>
|
|
/// <param name="agentInfo"> Dictionary of Agent to AgentInfo containing the
|
|
/// information that will be used to populate the tensor's data</param>
|
|
void Generate(
|
|
TensorProxy tensorProxy, int batchSize, Dictionary<Agent, AgentInfo> agentInfo);
|
|
}
|
|
|
|
private readonly Dictionary<string, IGenerator> m_Dict = new Dictionary<string, IGenerator>();
|
|
|
|
/// <summary>
|
|
/// Returns a new TensorGenerators object.
|
|
/// </summary>
|
|
/// <param name="bp"> The BrainParameters used to determine what Generators will be
|
|
/// used</param>
|
|
/// <param name="seed"> The seed the Generators will be initialized with.</param>
|
|
/// <param name="allocator"> Tensor allocator</param>
|
|
/// <param name="barracudaModel"></param>
|
|
public TensorGenerator(
|
|
BrainParameters bp, int seed, ITensorAllocator allocator, object barracudaModel = null)
|
|
{
|
|
// Generator for Inputs
|
|
m_Dict[TensorNames.BatchSizePlaceholder] =
|
|
new BatchSizeGenerator(allocator);
|
|
m_Dict[TensorNames.SequenceLengthPlaceholder] =
|
|
new SequenceLengthGenerator(allocator);
|
|
m_Dict[TensorNames.VectorObservationPlacholder] =
|
|
new VectorObservationGenerator(allocator);
|
|
m_Dict[TensorNames.RecurrentInPlaceholder] =
|
|
new RecurrentInputGenerator(allocator);
|
|
|
|
if (barracudaModel != null)
|
|
{
|
|
var model = (Model)barracudaModel;
|
|
for (var i = 0; i < model?.memories.Length; i++)
|
|
{
|
|
m_Dict[model.memories[i].input] =
|
|
new BarracudaRecurrentInputGenerator(i, allocator);
|
|
}
|
|
}
|
|
|
|
m_Dict[TensorNames.PreviousActionPlaceholder] =
|
|
new PreviousActionInputGenerator(allocator);
|
|
m_Dict[TensorNames.ActionMaskPlaceholder] =
|
|
new ActionMaskInputGenerator(allocator);
|
|
m_Dict[TensorNames.RandomNormalEpsilonPlaceholder] =
|
|
new RandomNormalInputGenerator(seed, allocator);
|
|
if (bp.cameraResolutions != null)
|
|
{
|
|
for (var visIndex = 0;
|
|
visIndex < bp.cameraResolutions.Length;
|
|
visIndex++)
|
|
{
|
|
var index = visIndex;
|
|
var bw = bp.cameraResolutions[visIndex].blackAndWhite;
|
|
m_Dict[TensorNames.VisualObservationPlaceholderPrefix + visIndex] =
|
|
new VisualObservationInputGenerator(index, bw, allocator);
|
|
}
|
|
}
|
|
|
|
// Generators for Outputs
|
|
m_Dict[TensorNames.ActionOutput] = new BiDimensionalOutputGenerator(allocator);
|
|
m_Dict[TensorNames.RecurrentOutput] = new BiDimensionalOutputGenerator(allocator);
|
|
m_Dict[TensorNames.ValueEstimateOutput] = new BiDimensionalOutputGenerator(allocator);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Populates the data of the tensor inputs given the data contained in the current batch
|
|
/// of agents.
|
|
/// </summary>
|
|
/// <param name="tensors"> Enumerable of tensors that will be modified.</param>
|
|
/// <param name="currentBatchSize"> The number of agents present in the current batch
|
|
/// </param>
|
|
/// <param name="agentInfos"> Dictionary of Agent to AgentInfo that contains the
|
|
/// data that will be used to modify the tensors</param>
|
|
/// <exception cref="UnityAgentsException"> One of the tensor does not have an
|
|
/// associated generator.</exception>
|
|
public void GenerateTensors(
|
|
IEnumerable<TensorProxy> tensors,
|
|
int currentBatchSize,
|
|
Dictionary<Agent, AgentInfo> agentInfos)
|
|
{
|
|
foreach (var tensor in tensors)
|
|
{
|
|
if (!m_Dict.ContainsKey(tensor.name))
|
|
{
|
|
throw new UnityAgentsException(
|
|
$"Unknown tensorProxy expected as input : {tensor.name}");
|
|
}
|
|
m_Dict[tensor.name].Generate(tensor, currentBatchSize, agentInfos);
|
|
}
|
|
}
|
|
}
|
|
}
|