Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

188 行
10 KiB

{
"name": "root",
"metadata": {
"timer_format_version": "0.1.0",
"start_time_seconds": "1613677471",
"python_version": "3.8.0 (v3.8.0:fa919fdf25, Oct 14 2019, 10:23:27) \n[Clang 6.0 (clang-600.0.57)]",
"command_line_arguments": "/Users/vincentpierre/Downloads/ml-agents/virt/bin/mlagents-learn config/ppo/Bullet.yaml --run-id=Bullet-New --force",
"mlagents_version": "0.25.0.dev0",
"mlagents_envs_version": "0.25.0.dev0",
"communication_protocol_version": "1.5.0",
"pytorch_version": "1.7.1",
"numpy_version": "1.20.1",
"end_time_seconds": "1613677731"
},
"total": 260.10270409099996,
"count": 1,
"self": 0.004630764000012277,
"children": {
"run_training.setup": {
"total": 0.04580752999999982,
"count": 1,
"self": 0.04580752999999982
},
"TrainerController.start_learning": {
"total": 260.05226579699996,
"count": 1,
"self": 1.1660524770007896,
"children": {
"TrainerController._reset_env": {
"total": 5.242996590000001,
"count": 1,
"self": 5.242996590000001
},
"TrainerController.advance": {
"total": 253.29225174099918,
"count": 6899,
"self": 0.08412016899902142,
"children": {
"env_step": {
"total": 253.20813157200016,
"count": 6899,
"self": 228.14743461499998,
"children": {
"SubprocessEnvManager._take_step": {
"total": 24.971866609000884,
"count": 6899,
"self": 0.46655585600191785,
"children": {
"TorchPolicy.evaluate": {
"total": 24.505310752998966,
"count": 6899,
"self": 1.7006215789988097,
"children": {
"TorchPolicy.sample_actions": {
"total": 22.804689174000156,
"count": 6899,
"self": 22.804689174000156
}
}
}
}
},
"workers": {
"total": 0.08883034799928957,
"count": 6899,
"self": 0.0,
"children": {
"worker_root": {
"total": 239.39310290800037,
"count": 6899,
"is_parallel": true,
"self": 146.8354822160008,
"children": {
"steps_from_proto": {
"total": 0.002746636999999552,
"count": 1,
"is_parallel": true,
"self": 0.00014749999999974506,
"children": {
"_process_rank_one_or_two_observation": {
"total": 0.002599136999999807,
"count": 4,
"is_parallel": true,
"self": 0.002599136999999807
}
}
},
"UnityEnvironment.step": {
"total": 92.55487405499956,
"count": 6899,
"is_parallel": true,
"self": 1.2039629259989084,
"children": {
"UnityEnvironment._generate_step_input": {
"total": 1.114030428999219,
"count": 6899,
"is_parallel": true,
"self": 1.114030428999219
},
"communicator.exchange": {
"total": 87.07063686200043,
"count": 6899,
"is_parallel": true,
"self": 87.07063686200043
},
"steps_from_proto": {
"total": 3.1662438380010016,
"count": 6899,
"is_parallel": true,
"self": 0.8688955430042506,
"children": {
"_process_rank_one_or_two_observation": {
"total": 2.297348294996751,
"count": 27596,
"is_parallel": true,
"self": 2.297348294996751
}
}
}
}
}
}
}
}
}
}
}
}
},
"trainer_threads": {
"total": 3.210599999192709e-05,
"count": 1,
"self": 3.210599999192709e-05,
"children": {
"thread_root": {
"total": 0.0,
"count": 0,
"is_parallel": true,
"self": 0.0,
"children": {
"trainer_advance": {
"total": 235.6225607969966,
"count": 512496,
"is_parallel": true,
"self": 7.638374632998875,
"children": {
"process_trajectory": {
"total": 108.28482177399769,
"count": 512497,
"is_parallel": true,
"self": 108.28482177399769
},
"_update_policy": {
"total": 119.69936439000004,
"count": 5,
"is_parallel": true,
"self": 0.0,
"children": {
"TorchPPOOptimizer.update": {
"total": 131.17446790699987,
"count": 170,
"is_parallel": true,
"self": 131.17446790699987
}
}
}
}
}
}
}
}
},
"TrainerController._save_models": {
"total": 0.3509328829999845,
"count": 1,
"self": 0.0007501160000060736,
"children": {
"RLTrainer._checkpoint": {
"total": 0.3501827669999784,
"count": 1,
"self": 0.3501827669999784
}
}
}
}
}
}
}