您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
80 行
3.6 KiB
80 行
3.6 KiB
using System.Collections.Generic;
|
|
|
|
namespace MLAgents.InferenceBrain
|
|
{
|
|
/// <summary>
|
|
/// Mapping between the output Tensor names and the method that will use the
|
|
/// output tensors and the Agents present in the batch to update their action, memories and
|
|
/// value estimates.
|
|
/// A TensorApplier implements a Dictionary of strings (node names) to an Action.
|
|
/// This action takes as input the Tensor and the Dictionary of Agent to AgentInfo for
|
|
/// the current batch.
|
|
/// </summary>
|
|
public class TensorApplier
|
|
{
|
|
/// <summary>
|
|
/// A tensor Applier's Execute method takes a Tensor and a Dictionary of Agent to AgentInfo.
|
|
/// Uses the data contained inside the Tensor to modify the state of the Agent. The Tensors
|
|
/// are assumed to have the batch size on the first dimension and the agents to be ordered
|
|
/// the same way in the dictionary and in the Tensor.
|
|
/// </summary>
|
|
public interface Applier
|
|
{
|
|
/// <summary>
|
|
/// Applies the values in the Tensor to the Agents present in the agentInfos
|
|
/// </summary>
|
|
/// <param name="tensor"> The Tensor containing the data to be applied to the Agents</param>
|
|
/// <param name="agentInfo"> Dictionary of Agents to AgentInfo that will reveive
|
|
/// the values of the Tensor.</param>
|
|
void Apply(Tensor tensor, Dictionary<Agent, AgentInfo> agentInfo);
|
|
}
|
|
|
|
Dictionary<string, Applier> _dict = new Dictionary<string, Applier>();
|
|
|
|
/// <summary>
|
|
/// Returns a new TensorAppliers object.
|
|
/// </summary>
|
|
/// <param name="bp"> The BrainParameters used to determine what Appliers will be
|
|
/// used</param>
|
|
/// <param name="seed"> The seed the Appliers will be initialized with.</param>
|
|
public TensorApplier(BrainParameters bp, int seed)
|
|
{
|
|
_dict[TensorNames.ValueEstimateOutput] = new ValueEstimateApplier();
|
|
if (bp.vectorActionSpaceType == SpaceType.continuous)
|
|
{
|
|
_dict[TensorNames.ActionOutput] = new ContinuousActionOutputApplier();
|
|
}
|
|
else
|
|
{
|
|
_dict[TensorNames.ActionOutput] = new DiscreteActionOutputApplier(
|
|
bp.vectorActionSize, seed);
|
|
}
|
|
_dict[TensorNames.RecurrentOutput] = new MemoryOutputApplier();
|
|
|
|
_dict[TensorNames.RecurrentOutput_C] = new BarracudaMemoryOutputApplier(true);
|
|
_dict[TensorNames.RecurrentOutput_H] = new BarracudaMemoryOutputApplier(false);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Updates the state of the agents based on the data present in the tensor.
|
|
/// </summary>
|
|
/// <param name="tensors"> Enumerable of tensors containing the data.</param>
|
|
/// <param name="agentInfos"> Dictionary of Agent to AgentInfo that contains the
|
|
/// Agents that will be updated using the tensor's data</param>
|
|
/// <exception cref="UnityAgentsException"> One of the tensor does not have an
|
|
/// associated applier.</exception>
|
|
public void ApplyTensors(
|
|
IEnumerable<Tensor> tensors, Dictionary<Agent, AgentInfo> agentInfos)
|
|
{
|
|
foreach (var tensor in tensors)
|
|
{
|
|
if (!_dict.ContainsKey(tensor.Name))
|
|
{
|
|
throw new UnityAgentsException(
|
|
"Unknow tensor expected as output : "+tensor.Name);
|
|
}
|
|
_dict[tensor.Name].Apply(tensor, agentInfos);
|
|
}
|
|
}
|
|
}
|
|
}
|