Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

127 行
3.9 KiB

import unittest.mock as mock
import pytest
import numpy as np
import tensorflow as tf
import yaml
from mlagents.trainers.ppo.trainer import PPOTrainer
from mlagents.trainers.ppo.multi_gpu_policy import MultiGpuPPOPolicy, get_devices
from mlagents.envs import UnityEnvironment, BrainParameters
from mlagents.envs.mock_communicator import MockCommunicator
from mlagents.trainers.tests.mock_brain import create_mock_brainparams
@pytest.fixture
def dummy_config():
return yaml.safe_load(
"""
trainer: ppo
batch_size: 32
beta: 5.0e-3
buffer_size: 512
epsilon: 0.2
hidden_units: 128
lambd: 0.95
learning_rate: 3.0e-4
max_steps: 5.0e4
normalize: true
num_epoch: 5
num_layers: 2
time_horizon: 64
sequence_length: 64
summary_freq: 1000
use_recurrent: false
memory_size: 8
curiosity_strength: 0.0
curiosity_enc_size: 1
reward_signals:
extrinsic:
strength: 1.0
gamma: 0.99
"""
)
@mock.patch("mlagents.trainers.ppo.multi_gpu_policy.get_devices")
def test_create_model(mock_get_devices, dummy_config):
tf.reset_default_graph()
mock_get_devices.return_value = [
"/device:GPU:0",
"/device:GPU:1",
"/device:GPU:2",
"/device:GPU:3",
]
trainer_parameters = dummy_config
trainer_parameters["model_path"] = ""
trainer_parameters["keep_checkpoints"] = 3
brain = create_mock_brainparams()
policy = MultiGpuPPOPolicy(0, brain, trainer_parameters, False, False)
assert len(policy.towers) == len(mock_get_devices.return_value)
@mock.patch("mlagents.trainers.ppo.multi_gpu_policy.get_devices")
def test_average_gradients(mock_get_devices, dummy_config):
tf.reset_default_graph()
mock_get_devices.return_value = [
"/device:GPU:0",
"/device:GPU:1",
"/device:GPU:2",
"/device:GPU:3",
]
trainer_parameters = dummy_config
trainer_parameters["model_path"] = ""
trainer_parameters["keep_checkpoints"] = 3
brain = create_mock_brainparams()
with tf.Session() as sess:
policy = MultiGpuPPOPolicy(0, brain, trainer_parameters, False, False)
var = tf.Variable(0)
tower_grads = [
[(tf.constant(0.1), var)],
[(tf.constant(0.2), var)],
[(tf.constant(0.3), var)],
[(tf.constant(0.4), var)],
]
avg_grads = policy.average_gradients(tower_grads)
init = tf.global_variables_initializer()
sess.run(init)
run_out = sess.run(avg_grads)
assert run_out == [(0.25, 0)]
@mock.patch("mlagents.trainers.tf_policy.TFPolicy._execute_model")
@mock.patch("mlagents.trainers.ppo.policy.PPOPolicy.construct_feed_dict")
@mock.patch("mlagents.trainers.ppo.multi_gpu_policy.get_devices")
def test_update(
mock_get_devices, mock_construct_feed_dict, mock_execute_model, dummy_config
):
tf.reset_default_graph()
mock_get_devices.return_value = ["/device:GPU:0", "/device:GPU:1"]
mock_construct_feed_dict.return_value = {}
mock_execute_model.return_value = {
"value_loss": 0.1,
"policy_loss": 0.3,
"update_batch": None,
}
trainer_parameters = dummy_config
trainer_parameters["model_path"] = ""
trainer_parameters["keep_checkpoints"] = 3
brain = create_mock_brainparams()
policy = MultiGpuPPOPolicy(0, brain, trainer_parameters, False, False)
mock_mini_batch = mock.Mock()
mock_mini_batch.items.return_value = [("action", [1, 2]), ("value", [3, 4])]
run_out = policy.update(mock_mini_batch, 1)
assert mock_mini_batch.items.call_count == len(mock_get_devices.return_value)
assert mock_construct_feed_dict.call_count == len(mock_get_devices.return_value)
assert run_out["Losses/Value Loss"] == 0.1
assert run_out["Losses/Policy Loss"] == 0.3
if __name__ == "__main__":
pytest.main()