import unittest.mock as mock import pytest import numpy as np import tensorflow as tf import yaml from mlagents.trainers.ppo.trainer import PPOTrainer from mlagents.trainers.ppo.multi_gpu_policy import MultiGpuPPOPolicy, get_devices from mlagents.envs import UnityEnvironment, BrainParameters from mlagents.envs.mock_communicator import MockCommunicator from mlagents.trainers.tests.mock_brain import create_mock_brainparams @pytest.fixture def dummy_config(): return yaml.safe_load( """ trainer: ppo batch_size: 32 beta: 5.0e-3 buffer_size: 512 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 3.0e-4 max_steps: 5.0e4 normalize: true num_epoch: 5 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 1000 use_recurrent: false memory_size: 8 curiosity_strength: 0.0 curiosity_enc_size: 1 reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ ) @mock.patch("mlagents.trainers.ppo.multi_gpu_policy.get_devices") def test_create_model(mock_get_devices, dummy_config): tf.reset_default_graph() mock_get_devices.return_value = [ "/device:GPU:0", "/device:GPU:1", "/device:GPU:2", "/device:GPU:3", ] trainer_parameters = dummy_config trainer_parameters["model_path"] = "" trainer_parameters["keep_checkpoints"] = 3 brain = create_mock_brainparams() policy = MultiGpuPPOPolicy(0, brain, trainer_parameters, False, False) assert len(policy.towers) == len(mock_get_devices.return_value) @mock.patch("mlagents.trainers.ppo.multi_gpu_policy.get_devices") def test_average_gradients(mock_get_devices, dummy_config): tf.reset_default_graph() mock_get_devices.return_value = [ "/device:GPU:0", "/device:GPU:1", "/device:GPU:2", "/device:GPU:3", ] trainer_parameters = dummy_config trainer_parameters["model_path"] = "" trainer_parameters["keep_checkpoints"] = 3 brain = create_mock_brainparams() with tf.Session() as sess: policy = MultiGpuPPOPolicy(0, brain, trainer_parameters, False, False) var = tf.Variable(0) tower_grads = [ [(tf.constant(0.1), var)], [(tf.constant(0.2), var)], [(tf.constant(0.3), var)], [(tf.constant(0.4), var)], ] avg_grads = policy.average_gradients(tower_grads) init = tf.global_variables_initializer() sess.run(init) run_out = sess.run(avg_grads) assert run_out == [(0.25, 0)] @mock.patch("mlagents.trainers.tf_policy.TFPolicy._execute_model") @mock.patch("mlagents.trainers.ppo.policy.PPOPolicy.construct_feed_dict") @mock.patch("mlagents.trainers.ppo.multi_gpu_policy.get_devices") def test_update( mock_get_devices, mock_construct_feed_dict, mock_execute_model, dummy_config ): tf.reset_default_graph() mock_get_devices.return_value = ["/device:GPU:0", "/device:GPU:1"] mock_construct_feed_dict.return_value = {} mock_execute_model.return_value = { "value_loss": 0.1, "policy_loss": 0.3, "update_batch": None, } trainer_parameters = dummy_config trainer_parameters["model_path"] = "" trainer_parameters["keep_checkpoints"] = 3 brain = create_mock_brainparams() policy = MultiGpuPPOPolicy(0, brain, trainer_parameters, False, False) mock_mini_batch = mock.Mock() mock_mini_batch.items.return_value = [("action", [1, 2]), ("value", [3, 4])] run_out = policy.update(mock_mini_batch, 1) assert mock_mini_batch.items.call_count == len(mock_get_devices.return_value) assert mock_construct_feed_dict.call_count == len(mock_get_devices.return_value) assert run_out["Losses/Value Loss"] == 0.1 assert run_out["Losses/Policy Loss"] == 0.3 if __name__ == "__main__": pytest.main()