Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

193 行
5.2 KiB

using System;
using Unity.Barracuda;
using NUnit.Framework;
using UnityEngine;
using Unity.MLAgents.Inference;
using Unity.MLAgents.Inference.Utils;
namespace Unity.MLAgents.Tests
{
public class DiscreteActionOutputApplierTest
{
[Test]
public void TestEvalP()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
data = new Tensor(1, 3, new[] {0.1f, 0.2f, 0.7f}),
valueType = TensorProxy.TensorType.FloatingPoint
};
var dst = new TensorProxy
{
data = new Tensor(1, 3),
valueType = TensorProxy.TensorType.FloatingPoint
};
DiscreteActionOutputApplier.Eval(src, dst, m);
float[] reference = {2, 2, 1};
for (var i = 0; i < dst.data.length; i++)
{
Assert.AreEqual(reference[i], dst.data[i]);
++i;
}
}
[Test]
public void TestEvalLogits()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
data = new Tensor(
1,
3,
new[] { Mathf.Log(0.1f) - 50, Mathf.Log(0.2f) - 50, Mathf.Log(0.7f) - 50 }),
valueType = TensorProxy.TensorType.FloatingPoint
};
var dst = new TensorProxy
{
data = new Tensor(1, 3),
valueType = TensorProxy.TensorType.FloatingPoint
};
DiscreteActionOutputApplier.Eval(src, dst, m);
float[] reference = {2, 2, 2};
for (var i = 0; i < dst.data.length; i++)
{
Assert.AreEqual(reference[i], dst.data[i]);
++i;
}
}
[Test]
public void TestEvalBatching()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
data = new Tensor(2, 3, new[]
{
Mathf.Log(0.1f) - 50, Mathf.Log(0.2f) - 50, Mathf.Log(0.7f) - 50,
Mathf.Log(0.3f) - 25, Mathf.Log(0.4f) - 25, Mathf.Log(0.3f) - 25
}),
valueType = TensorProxy.TensorType.FloatingPoint
};
var dst = new TensorProxy
{
data = new Tensor(2, 3),
valueType = TensorProxy.TensorType.FloatingPoint
};
DiscreteActionOutputApplier.Eval(src, dst, m);
float[] reference = {2, 2, 2, 0, 1, 0};
for (var i = 0; i < dst.data.length; i++)
{
Assert.AreEqual(reference[i], dst.data[i]);
++i;
}
}
[Test]
public void TestSrcInt()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
valueType = TensorProxy.TensorType.Integer
};
Assert.Throws<NotImplementedException>(
() => DiscreteActionOutputApplier.Eval(src, null, m));
}
[Test]
public void TestDstInt()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint
};
var dst = new TensorProxy
{
valueType = TensorProxy.TensorType.Integer
};
Assert.Throws<ArgumentException>(
() => DiscreteActionOutputApplier.Eval(src, dst, m));
}
[Test]
public void TestSrcDataNull()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint
};
var dst = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint
};
Assert.Throws<ArgumentNullException>(
() => DiscreteActionOutputApplier.Eval(src, dst, m));
}
[Test]
public void TestDstDataNull()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(0, 1)
};
var dst = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint
};
Assert.Throws<ArgumentNullException>(
() => DiscreteActionOutputApplier.Eval(src, dst, m));
}
[Test]
public void TestUnequalBatchSize()
{
var m = new Multinomial(2018);
var src = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(1, 1)
};
var dst = new TensorProxy
{
valueType = TensorProxy.TensorType.FloatingPoint,
data = new Tensor(2, 1)
};
Assert.Throws<ArgumentException>(
() => DiscreteActionOutputApplier.Eval(src, dst, m));
}
}
}