Unity 机器学习代理工具包 (ML-Agents) 是一个开源项目,它使游戏和模拟能够作为训练智能代理的环境。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 

111 行
5.5 KiB

import json
import os
import torch
import tensorflow as tf
import argparse
from mlagents.trainers.learn import run_cli, parse_command_line
from mlagents.trainers.settings import RunOptions
from mlagents.trainers.stats import StatsReporter
from mlagents.trainers.ppo.trainer import TestingConfiguration
from mlagents_envs.timers import _thread_timer_stacks
def run_experiment(name:str, steps:int, use_torch:bool, num_torch_threads:int, use_gpu:bool, num_envs :int= 1, config_name=None):
TestingConfiguration.env_name = name
TestingConfiguration.max_steps = steps
TestingConfiguration.use_torch = use_torch
TestingConfiguration.device = "cuda:0" if use_gpu else "cpu"
if use_gpu:
tf.device("/GPU:0")
else:
tf.device("/device:CPU:0")
if (not torch.cuda.is_available() and use_gpu):
return name, str(steps), str(use_torch), str(num_torch_threads), str(num_envs), str(use_gpu), "na","na","na","na","na","na","na"
if config_name is None:
config_name = name
run_options = parse_command_line([f"config/ppo/{config_name}.yaml", "--num-envs", f"{num_envs}"])
run_options.checkpoint_settings.run_id = f"{name}_test_" +str(steps) +"_"+("torch" if use_torch else "tf")
run_options.checkpoint_settings.force = True
# run_options.env_settings.num_envs = num_envs
for trainer_settings in run_options.behaviors.values():
trainer_settings.threaded = False
timers_path = os.path.join("results", run_options.checkpoint_settings.run_id, "run_logs", "timers.json")
if use_torch:
torch.set_num_threads(num_torch_threads)
run_cli(run_options)
StatsReporter.writers.clear()
StatsReporter.stats_dict.clear()
_thread_timer_stacks.clear()
with open(timers_path) as timers_json_file:
timers_json = json.load(timers_json_file)
total = timers_json["total"]
tc_advance = timers_json["children"]["TrainerController.start_learning"]["children"]["TrainerController.advance"]
evaluate = timers_json["children"]["TrainerController.start_learning"]["children"]["TrainerController.advance"]["children"]["env_step"]["children"]["SubprocessEnvManager._take_step"]["children"]
update = timers_json["children"]["TrainerController.start_learning"]["children"]["TrainerController.advance"]["children"]["trainer_advance"]["children"]["_update_policy"]["children"]
tc_advance_total = tc_advance["total"]
tc_advance_count = tc_advance["count"]
if use_torch:
update_total = update["TorchPPOOptimizer.update"]["total"]
evaluate_total = evaluate["TorchPolicy.evaluate"]["total"]
update_count = update["TorchPPOOptimizer.update"]["count"]
evaluate_count = evaluate["TorchPolicy.evaluate"]["count"]
else:
update_total = update["TFPPOOptimizer.update"]["total"]
evaluate_total = evaluate["NNPolicy.evaluate"]["total"]
update_count = update["TFPPOOptimizer.update"]["count"]
evaluate_count= evaluate["NNPolicy.evaluate"]["count"]
# todo: do total / count
return name, str(steps), str(use_torch), str(num_torch_threads), str(num_envs), str(use_gpu), str(total), str(tc_advance_total), str(tc_advance_count), str(update_total), str(update_count), str(evaluate_total), str(evaluate_count)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--steps", default=25000, type=int, help="The number of steps")
parser.add_argument("--num-envs", default=1, type=int, help="The number of envs")
parser.add_argument("--gpu", default = False, action="store_true", help="If true, will use the GPU")
parser.add_argument("--threads", default=False, action="store_true", help="If true, will try both 1 and 8 threads for torch")
parser.add_argument("--ball", default=False, action="store_true", help="If true, will only do 3dball")
args = parser.parse_args()
if args.gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
envs_config_tuples = [("3DBall", "3DBall"), ("GridWorld", "GridWorld"), ("PushBlock", "PushBlock"), ("Hallway", "Hallway"), ("CrawlerStaticTarget", "CrawlerStatic"), ("VisualHallway", "VisualHallway")]
if args.ball:
envs_config_tuples=[("3DBall", "3DBall")]
labels = ("name", "steps", "use_torch", "num_torch_threads", "num_envs", "use_gpu" , "total", "tc_advance_total", "tc_advance_count", "update_total", "update_count", "evaluate_total", "evaluate_count")
results = []
results.append(labels)
f = open(f"result_data_steps_{args.steps}_envs_{args.num_envs}_gpu_{args.gpu}_thread_{args.threads}.txt", "w")
f.write(" ".join(labels)+ "\n")
for env_config in envs_config_tuples:
data = run_experiment(name = env_config[0], steps=args.steps, use_torch=True, num_torch_threads=1, use_gpu=args.gpu, num_envs = args.num_envs, config_name=env_config[1])
results.append(data)
f.write(" ".join(data) + "\n")
if args.threads:
data = run_experiment(name = env_config[0], steps=args.steps, use_torch=True, num_torch_threads=8, use_gpu=args.gpu, num_envs = args.num_envs, config_name=env_config[1])
results.append(data)
f.write(" ".join(data)+ "\n")
data = run_experiment(name = env_config[0], steps=args.steps, use_torch=False, num_torch_threads=1, use_gpu=args.gpu, num_envs = args.num_envs, config_name=env_config[1])
results.append(data)
f.write(" ".join(data)+ "\n")
for r in results:
print(*r)
f.close()
if __name__ == "__main__":
main()