import json import os import torch import tensorflow as tf import argparse from mlagents.trainers.learn import run_cli, parse_command_line from mlagents.trainers.settings import RunOptions from mlagents.trainers.stats import StatsReporter from mlagents.trainers.ppo.trainer import TestingConfiguration from mlagents_envs.timers import _thread_timer_stacks def run_experiment(name:str, steps:int, use_torch:bool, num_torch_threads:int, use_gpu:bool, num_envs :int= 1, config_name=None): TestingConfiguration.env_name = name TestingConfiguration.max_steps = steps TestingConfiguration.use_torch = use_torch TestingConfiguration.device = "cuda:0" if use_gpu else "cpu" if use_gpu: tf.device("/GPU:0") else: tf.device("/device:CPU:0") if (not torch.cuda.is_available() and use_gpu): return name, str(steps), str(use_torch), str(num_torch_threads), str(num_envs), str(use_gpu), "na","na","na","na","na","na","na" if config_name is None: config_name = name run_options = parse_command_line([f"config/ppo/{config_name}.yaml", "--num-envs", f"{num_envs}"]) run_options.checkpoint_settings.run_id = f"{name}_test_" +str(steps) +"_"+("torch" if use_torch else "tf") run_options.checkpoint_settings.force = True # run_options.env_settings.num_envs = num_envs for trainer_settings in run_options.behaviors.values(): trainer_settings.threaded = False timers_path = os.path.join("results", run_options.checkpoint_settings.run_id, "run_logs", "timers.json") if use_torch: torch.set_num_threads(num_torch_threads) run_cli(run_options) StatsReporter.writers.clear() StatsReporter.stats_dict.clear() _thread_timer_stacks.clear() with open(timers_path) as timers_json_file: timers_json = json.load(timers_json_file) total = timers_json["total"] tc_advance = timers_json["children"]["TrainerController.start_learning"]["children"]["TrainerController.advance"] evaluate = timers_json["children"]["TrainerController.start_learning"]["children"]["TrainerController.advance"]["children"]["env_step"]["children"]["SubprocessEnvManager._take_step"]["children"] update = timers_json["children"]["TrainerController.start_learning"]["children"]["TrainerController.advance"]["children"]["trainer_advance"]["children"]["_update_policy"]["children"] tc_advance_total = tc_advance["total"] tc_advance_count = tc_advance["count"] if use_torch: update_total = update["TorchPPOOptimizer.update"]["total"] evaluate_total = evaluate["TorchPolicy.evaluate"]["total"] update_count = update["TorchPPOOptimizer.update"]["count"] evaluate_count = evaluate["TorchPolicy.evaluate"]["count"] else: update_total = update["TFPPOOptimizer.update"]["total"] evaluate_total = evaluate["NNPolicy.evaluate"]["total"] update_count = update["TFPPOOptimizer.update"]["count"] evaluate_count= evaluate["NNPolicy.evaluate"]["count"] # todo: do total / count return name, str(steps), str(use_torch), str(num_torch_threads), str(num_envs), str(use_gpu), str(total), str(tc_advance_total), str(tc_advance_count), str(update_total), str(update_count), str(evaluate_total), str(evaluate_count) def main(): parser = argparse.ArgumentParser() parser.add_argument("--steps", default=25000, type=int, help="The number of steps") parser.add_argument("--num-envs", default=1, type=int, help="The number of envs") parser.add_argument("--gpu", default = False, action="store_true", help="If true, will use the GPU") parser.add_argument("--threads", default=False, action="store_true", help="If true, will try both 1 and 8 threads for torch") parser.add_argument("--ball", default=False, action="store_true", help="If true, will only do 3dball") args = parser.parse_args() if args.gpu: os.environ["CUDA_VISIBLE_DEVICES"] = "0" else: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" envs_config_tuples = [("3DBall", "3DBall"), ("GridWorld", "GridWorld"), ("PushBlock", "PushBlock"), ("Hallway", "Hallway"), ("CrawlerStaticTarget", "CrawlerStatic"), ("VisualHallway", "VisualHallway")] if args.ball: envs_config_tuples=[("3DBall", "3DBall")] labels = ("name", "steps", "use_torch", "num_torch_threads", "num_envs", "use_gpu" , "total", "tc_advance_total", "tc_advance_count", "update_total", "update_count", "evaluate_total", "evaluate_count") results = [] results.append(labels) f = open(f"result_data_steps_{args.steps}_envs_{args.num_envs}_gpu_{args.gpu}_thread_{args.threads}.txt", "w") f.write(" ".join(labels)+ "\n") for env_config in envs_config_tuples: data = run_experiment(name = env_config[0], steps=args.steps, use_torch=True, num_torch_threads=1, use_gpu=args.gpu, num_envs = args.num_envs, config_name=env_config[1]) results.append(data) f.write(" ".join(data) + "\n") if args.threads: data = run_experiment(name = env_config[0], steps=args.steps, use_torch=True, num_torch_threads=8, use_gpu=args.gpu, num_envs = args.num_envs, config_name=env_config[1]) results.append(data) f.write(" ".join(data)+ "\n") data = run_experiment(name = env_config[0], steps=args.steps, use_torch=False, num_torch_threads=1, use_gpu=args.gpu, num_envs = args.num_envs, config_name=env_config[1]) results.append(data) f.write(" ".join(data)+ "\n") for r in results: print(*r) f.close() if __name__ == "__main__": main()