11 KiB
Table of Contents
- pyrception_utils
- pyrception_utils.cli
- pyrception_utils.preview
- pyrception_utils.pyrception
- pyrception_utils.pyrception_gcs
pyrception_utils
pyrception_utils.cli
preview
@subcommand(
[argument("--data", type=str, help="The path to the main perception data folder.")]
)
preview(args)
Previews the dataset in a streamlit app.
pyrception_utils.preview
list_datasets
list_datasets(path) -> List
Lists the datasets in a diretory.
Arguments:
path
: path to a directory that contains dataset folders :type str:
Returns:
A list of dataset directories. :rtype: List
frame_selector_ui
frame_selector_ui(dataset: PyrceptionDataset) -> int
Frame selector streamlist widget to select which frame in the dataset to display
Arguments:
dataset
: the PyrceptionDataset :type PyrceptionDataset:
Returns:
The image index :rtype: int
draw_image_with_boxes
draw_image_with_boxes
draw_image_with_boxes(image: Image, classes: Dict, labels: List, boxes: List[List], colors: Dict, header: str, description: str)
Draws an image in streamlit with labels and bounding boxes.
Arguments:
image
: the PIL image :type PIL:classes
: the class dictionary :type Dict:labels
: list of integer object labels for the frame :type List:boxes
: List of bounding boxes (as a List of coordinates) for the frame :type List[List]:colors
: class colors :type Dict:header
: Image header :type str:description
: Image description :type str:
load_perception_dataset
@st.cache(show_spinner=True, allow_output_mutation=True)
load_perception_dataset(path: str) -> Tuple
Loads the perception dataset in the cache and caches the random bounding box color scheme.
Arguments:
path
: Dataset path :type str:
Returns:
A tuple with the colors and PyrceptionDataset object as (colors, dataset) :rtype: Tuple
preview_dataset
preview_dataset(base_dataset_dir: str)
Adds streamlit components to the app to construct the dataset preview.
Arguments:
base_dataset_dir
: The directory that contains the perceptions datasets. :type str:
preview_app
preview_app(args)
Starts the dataset preview app.
Arguments:
args
: Arguments for the app, such as dataset :type args: Namespace
pyrception_utils.pyrception
FileType Objects
class FileType(Enum)
Enumerator for file types in the perception dataset. Based on
glob
glob(data_root: str, pattern: str) -> Iterator[str]
Find all files in a directory, data_dir, that match the pattern.
Arguments:
data_root
: The path to the directory that contains the dataset. :type str:pattern
: The file pattern to match. :type str:
Returns:
Returns an string iterator containing the paths to the matching files. :rtype: Iterator[str]
file_number
file_number(filename)
Key function to sort glob list.
Arguments:
filename
: POSIX path :type filename:
Returns:
:rtype:
glob_list
glob_list(data_root: str, pattern: str) -> List
Find all files in a directory, data_dir, that match the pattern.
Arguments:
data_root
: The path to the directory that contains the dataset. :type str:pattern
: The file pattern to match. :type str:
Returns:
Returns an string iterator containing the paths to the matching files. :rtype: Iterator[str]
load_json
load_json(file: str, key: Union[str, List]) -> Dict
Loads top level records from json file given key or list of keys.
Arguments:
file
: The json filename. :type str:key
: The top-level key or list of keys to load. :type Union[str, List]:
Returns:
Returns a dictionary representing the json record :rtype: Dict
PyrceptionDatasetMetadata Objects
class PyrceptionDatasetMetadata()
__init__
| __init__(data_dir: str = None)
Creates a PyrceptionDataset object that can be used to iterate through the perception dataset.
Arguments:
data_dir
: The path to the perception dataset. :type str:
PyrceptionDataset Objects
class PyrceptionDataset()
Pyrception class for reading and visualizing annotations generated by the perception SDK.
__init__
| __init__(metadata: PyrceptionDatasetMetadata = None, data_dir: str = None)
Creates a PyrceptionDataset object that can be used to iterate through the perception dataset.
Arguments:
data_dir
: The path to the perception dataset. :type str:
__getitem__
| __getitem__(index: int) -> Tuple
Iterator to get one frame at a time based on index.
Arguments:
index
: the index of the frame to retrieve :type int:
Returns:
Returns a tuple containing the image and target metadata as (image, target) :rtype: Tuple
__len__
| __len__() -> int
Returns the length of the perception dataset.
Returns:
Length of the dataset. :rtype: int
pyrception_utils.pyrception_gcs
FileType Objects
class FileType(Enum)
Enumerator for file types in the perception dataset. Based on
glob
glob(data_root: str, pattern: str) -> Iterator[str]
Find all files in a directory, data_dir, that match the pattern.
Arguments:
data_root
: The path to the directory that contains the dataset. :type str:pattern
: The file pattern to match. :type str:
Returns:
Returns an string iterator containing the paths to the matching files. :rtype: Iterator[str]
glob_list
glob_list(fs: GCSFileSystem, data_root: str, pattern: str) -> List
Find all files in a directory, data_dir, that match the pattern.
Arguments:
fs
: the GCSFileSystem object :type GCSFileSystemdata_root
: The path to the directory that contains the dataset. :type str:pattern
: The file pattern to match. :type str:
Returns:
Returns an string iterator containing the paths to the matching files. :rtype: Iterator[str]
load_json
load_json(fs: GCSFileSystem, file: str, key: Union[str, List]) -> Dict
Loads top level records from json file given key or list of keys.
Arguments:
fs
: the GCSFileSystem object :type GCSFileSystemfile
: The json filename. :type str:key
: The top-level key or list of keys to load. :type Union[str, List]:
Returns:
Returns a dictionary representing the json record :rtype: Dict
PyrceptionGCSDataset Objects
class PyrceptionGCSDataset()
Pyrception class for reading and visualizing annotations generated by the perception SDK.
__init__
| __init__(project_id: str = None, dataset_bucket: str = None, dataset_folder: str = None)
Creates a PyrceptionDataset object that can be used to iterate through the perception dataset.
Arguments:
dataset_bucket
: The path to the perception dataset. :type str:
__getitem__
| __getitem__(index: int) -> Tuple
Iterator to get one frame at a time based on index.
Arguments:
index
: the index of the frame to retrieve :type int:
Returns:
Returns a tuple containing the image and target metadata as (image, target) :rtype: Tuple
__len__
| __len__() -> int
Returns the length of the perception dataset.
Returns:
Length of the dataset. :rtype: int