您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
666 行
29 KiB
666 行
29 KiB
using System;
|
|
using UnityEngine.Rendering;
|
|
using System.Collections.Generic;
|
|
using System.Runtime.InteropServices;
|
|
|
|
namespace UnityEngine.Experimental.Rendering.HDPipeline
|
|
{
|
|
[GenerateHLSL]
|
|
public struct DensityVolumeData
|
|
{
|
|
public Vector3 scattering; // [0, 1], prefer sRGB
|
|
public float extinction; // [0, 1], prefer sRGB
|
|
public Vector3 textureTiling;
|
|
public int textureIndex; //
|
|
public Vector3 textureScroll;
|
|
|
|
public static DensityVolumeData GetNeutralValues()
|
|
{
|
|
DensityVolumeData data;
|
|
|
|
data.scattering = Vector3.zero;
|
|
data.extinction = 0;
|
|
data.textureIndex = -1;
|
|
|
|
data.textureTiling = Vector3.one;
|
|
data.textureScroll = Vector3.zero;
|
|
|
|
return data;
|
|
}
|
|
} // struct VolumeProperties
|
|
|
|
public class VolumeRenderingUtils
|
|
{
|
|
public static float MeanFreePathFromExtinction(float extinction)
|
|
{
|
|
return 1.0f / extinction;
|
|
}
|
|
|
|
public static float ExtinctionFromMeanFreePath(float meanFreePath)
|
|
{
|
|
return 1.0f / meanFreePath;
|
|
}
|
|
|
|
public static Vector3 AbsorptionFromExtinctionAndScattering(float extinction, Vector3 scattering)
|
|
{
|
|
return new Vector3(extinction, extinction, extinction) - scattering;
|
|
}
|
|
|
|
public static Vector3 ScatteringFromExtinctionAndAlbedo(float extinction, Vector3 albedo)
|
|
{
|
|
return extinction * albedo;
|
|
}
|
|
|
|
public static Vector3 AlbedoFromMeanFreePathAndScattering(float meanFreePath, Vector3 scattering)
|
|
{
|
|
return meanFreePath * scattering;
|
|
}
|
|
}
|
|
|
|
public struct DensityVolumeList
|
|
{
|
|
public List<OrientedBBox> bounds;
|
|
public List<DensityVolumeData> density;
|
|
}
|
|
|
|
public class VolumetricLightingSystem
|
|
{
|
|
public enum VolumetricLightingPreset
|
|
{
|
|
Off,
|
|
Normal,
|
|
Ultra,
|
|
Count
|
|
} // enum VolumetricLightingPreset
|
|
|
|
public struct VBufferParameters
|
|
{
|
|
public Vector4 resolution;
|
|
public Vector2 sliceCount;
|
|
public Vector4 uvScaleAndLimit; // Necessary to work with sub-allocation (resource aliasing) in the RTHandle system
|
|
public Vector4 depthEncodingParams;
|
|
public Vector4 depthDecodingParams;
|
|
|
|
public VBufferParameters(Vector3Int viewportResolution, Vector3Int bufferResolution, Vector2 depthRange, float depthDistributionUniformity)
|
|
{
|
|
int w = viewportResolution.x;
|
|
int h = viewportResolution.y;
|
|
int d = viewportResolution.z;
|
|
|
|
// The depth is fixed for now.
|
|
Vector2 uvScale = new Vector2((float)w / (float)bufferResolution.x,
|
|
(float)h / (float)bufferResolution.y);
|
|
|
|
// vp_scale = vp_dim / tex_dim.
|
|
// clamp to (vp_dim - 0.5) / tex_dim = vp_scale - 0.5 * (1 / tex_dim) =
|
|
// vp_scale - 0.5 * (vp_scale / vp_dim) = vp_scale * (1 - 0.5 / vp_dim).
|
|
Vector2 uvLimit = new Vector2((w - 0.5f) / (float)bufferResolution.x,
|
|
(h - 0.5f) / (float)bufferResolution.y);
|
|
|
|
resolution = new Vector4(w, h, 1.0f / w, 1.0f / h);
|
|
sliceCount = new Vector2(d, 1.0f / d);
|
|
uvScaleAndLimit = new Vector4(uvScale.x, uvScale.y, uvLimit.x, uvLimit.y);
|
|
|
|
float n = depthRange.x;
|
|
float f = depthRange.y;
|
|
float c = 2 - 2 * depthDistributionUniformity; // remap [0, 1] -> [2, 0]
|
|
|
|
depthEncodingParams = ComputeLogarithmicDepthEncodingParams(n, f, c);
|
|
depthDecodingParams = ComputeLogarithmicDepthDecodingParams(n, f, c);
|
|
}
|
|
} // struct Parameters
|
|
|
|
public VolumetricLightingPreset preset { get { return (VolumetricLightingPreset)Math.Min(ShaderConfig.s_VolumetricLightingPreset, (int)VolumetricLightingPreset.Count); } }
|
|
|
|
static ComputeShader m_VolumeVoxelizationCS = null;
|
|
static ComputeShader m_VolumetricLightingCS = null;
|
|
|
|
List<OrientedBBox> m_VisibleVolumeBounds = null;
|
|
List<DensityVolumeData> m_VisibleVolumeData = null;
|
|
public const int k_MaxVisibleVolumeCount = 512;
|
|
|
|
// Static keyword is required here else we get a "DestroyBuffer can only be called from the main thread"
|
|
static ComputeBuffer s_VisibleVolumeBoundsBuffer = null;
|
|
static ComputeBuffer s_VisibleVolumeDataBuffer = null;
|
|
|
|
// These two buffers do not depend on the frameID and are therefore shared by all views.
|
|
RTHandleSystem.RTHandle m_DensityBufferHandle;
|
|
RTHandleSystem.RTHandle m_LightingBufferHandle;
|
|
|
|
public void Build(HDRenderPipelineAsset asset)
|
|
{
|
|
if (preset == VolumetricLightingPreset.Off) return;
|
|
|
|
m_VolumeVoxelizationCS = asset.renderPipelineResources.volumeVoxelizationCS;
|
|
m_VolumetricLightingCS = asset.renderPipelineResources.volumetricLightingCS;
|
|
|
|
CreateBuffers();
|
|
}
|
|
|
|
// RTHandleSystem API expects a function which computes the resolution. We define it here.
|
|
Vector2Int ComputeVBuffeResolutionXY(Vector2Int screenSize)
|
|
{
|
|
Vector3Int resolution = ComputeVBufferResolution(preset, screenSize.x, screenSize.y);
|
|
|
|
// Since the buffers owned by the VolumetricLightingSystem may have different lifetimes compared
|
|
// to those owned by the HDCamera, we need to make sure that the buffer resolution is the same
|
|
// (in order to share the UV scale and the UV limit).
|
|
if (m_LightingBufferHandle != null)
|
|
{
|
|
resolution.x = Math.Max(resolution.x, m_LightingBufferHandle.rt.width);
|
|
resolution.y = Math.Max(resolution.y, m_LightingBufferHandle.rt.height);
|
|
}
|
|
|
|
return new Vector2Int(resolution.x, resolution.y);
|
|
}
|
|
|
|
// BufferedRTHandleSystem API expects an allocator function. We define it here.
|
|
RTHandleSystem.RTHandle HistoryBufferAllocatorFunction(string viewName, int frameIndex, RTHandleSystem rtHandleSystem)
|
|
{
|
|
frameIndex &= 1;
|
|
|
|
int d = ComputeVBufferSliceCount(preset);
|
|
|
|
return rtHandleSystem.Alloc(scaleFunc: ComputeVBuffeResolutionXY,
|
|
slices: d,
|
|
dimension: TextureDimension.Tex3D,
|
|
colorFormat: RenderTextureFormat.ARGBHalf,
|
|
sRGB: false,
|
|
enableRandomWrite: true,
|
|
enableMSAA: false,
|
|
/* useDynamicScale: true, // <- TODO */
|
|
name: string.Format("{0}_VBufferHistory{1}", viewName, frameIndex)
|
|
);
|
|
}
|
|
|
|
void CreateBuffers()
|
|
{
|
|
Debug.Assert(m_VolumetricLightingCS != null);
|
|
|
|
m_VisibleVolumeBounds = new List<OrientedBBox>();
|
|
m_VisibleVolumeData = new List<DensityVolumeData>();
|
|
s_VisibleVolumeBoundsBuffer = new ComputeBuffer(k_MaxVisibleVolumeCount, Marshal.SizeOf(typeof(OrientedBBox)));
|
|
s_VisibleVolumeDataBuffer = new ComputeBuffer(k_MaxVisibleVolumeCount, Marshal.SizeOf(typeof(DensityVolumeData)));
|
|
|
|
int d = ComputeVBufferSliceCount(preset);
|
|
|
|
m_DensityBufferHandle = RTHandles.Alloc(scaleFunc: ComputeVBuffeResolutionXY,
|
|
slices: d,
|
|
dimension: TextureDimension.Tex3D,
|
|
colorFormat: RenderTextureFormat.ARGBHalf,
|
|
sRGB: false,
|
|
enableRandomWrite: true,
|
|
enableMSAA: false,
|
|
/* useDynamicScale: true, // <- TODO */
|
|
name: "VBufferDensity");
|
|
|
|
m_LightingBufferHandle = RTHandles.Alloc(scaleFunc: ComputeVBuffeResolutionXY,
|
|
slices: d,
|
|
dimension: TextureDimension.Tex3D,
|
|
colorFormat: RenderTextureFormat.ARGBHalf,
|
|
sRGB: false,
|
|
enableRandomWrite: true,
|
|
enableMSAA: false,
|
|
/* useDynamicScale: true, // <- TODO */
|
|
name: "VBufferIntegral");
|
|
}
|
|
|
|
// For the initial allocation, no suballocation happens (the texture is full size).
|
|
VBufferParameters ComputeVBufferParameters(HDCamera camera, bool isInitialAllocation)
|
|
{
|
|
Vector3Int viewportResolution = ComputeVBufferResolution(preset, camera.camera.pixelWidth, camera.camera.pixelHeight);
|
|
Vector3Int bufferResolution; // Could be higher due to sub-allocation (resource aliasing) in the RTHandle system
|
|
|
|
if (isInitialAllocation)
|
|
{
|
|
bufferResolution = viewportResolution;
|
|
}
|
|
else
|
|
{
|
|
// All V-Buffers of the current frame should have the same size (you have to double-buffer history, of course).
|
|
bufferResolution = new Vector3Int(m_LightingBufferHandle.rt.width, m_LightingBufferHandle.rt.height, m_LightingBufferHandle.rt.volumeDepth);
|
|
}
|
|
|
|
var controller = VolumeManager.instance.stack.GetComponent<VolumetricLightingController>();
|
|
|
|
// We must not allow the V-Buffer to extend outside of the camera's frustum.
|
|
float n = camera.camera.nearClipPlane;
|
|
float f = camera.camera.farClipPlane;
|
|
|
|
Vector2 vBufferDepthRange = controller.depthRange.value;
|
|
vBufferDepthRange.y = Mathf.Clamp(vBufferDepthRange.y, n, f); // far
|
|
vBufferDepthRange.x = Mathf.Clamp(vBufferDepthRange.x, n, vBufferDepthRange.y); // near
|
|
float vBufferDepthDistributionUniformity = controller.depthDistributionUniformity.value;
|
|
|
|
return new VBufferParameters(viewportResolution, bufferResolution, vBufferDepthRange, vBufferDepthDistributionUniformity);
|
|
}
|
|
|
|
public void InitializePerCameraData(HDCamera camera)
|
|
{
|
|
if (preset == VolumetricLightingPreset.Off) return;
|
|
|
|
// Start with the same parameters for both frames. Then update them one by one every frame.
|
|
var parameters = ComputeVBufferParameters(camera, true);
|
|
camera.vBufferParams = new VBufferParameters[2];
|
|
camera.vBufferParams[0] = parameters;
|
|
camera.vBufferParams[1] = parameters;
|
|
|
|
if (camera.camera.cameraType == CameraType.Game ||
|
|
camera.camera.cameraType == CameraType.SceneView)
|
|
{
|
|
// We don't need reprojection for other view types, such as reflection and preview.
|
|
camera.AllocHistoryFrameRT((int)HDCameraFrameHistoryType.VolumetricLighting, HistoryBufferAllocatorFunction);
|
|
}
|
|
}
|
|
|
|
// This function relies on being called once per camera per frame.
|
|
// The results are undefined otherwise.
|
|
public void UpdatePerCameraData(HDCamera camera)
|
|
{
|
|
if (preset == VolumetricLightingPreset.Off) return;
|
|
|
|
var parameters = ComputeVBufferParameters(camera, false);
|
|
|
|
// Double-buffer. I assume the cost of copying is negligible (don't want to use the frame index).
|
|
camera.vBufferParams[1] = camera.vBufferParams[0];
|
|
camera.vBufferParams[0] = parameters;
|
|
|
|
// Note: resizing of history buffer is automatic (handled by the BufferedRTHandleSystem).
|
|
}
|
|
|
|
void DestroyBuffers()
|
|
{
|
|
RTHandles.Release(m_DensityBufferHandle);
|
|
RTHandles.Release(m_LightingBufferHandle);
|
|
|
|
CoreUtils.SafeRelease(s_VisibleVolumeBoundsBuffer);
|
|
CoreUtils.SafeRelease(s_VisibleVolumeDataBuffer);
|
|
|
|
m_VisibleVolumeBounds = null;
|
|
m_VisibleVolumeData = null;
|
|
}
|
|
|
|
public void Cleanup()
|
|
{
|
|
if (preset == VolumetricLightingPreset.Off) return;
|
|
|
|
DestroyBuffers();
|
|
|
|
m_VolumeVoxelizationCS = null;
|
|
m_VolumetricLightingCS = null;
|
|
}
|
|
|
|
static int ComputeVBufferTileSize(VolumetricLightingPreset preset)
|
|
{
|
|
switch (preset)
|
|
{
|
|
case VolumetricLightingPreset.Normal:
|
|
return 8;
|
|
case VolumetricLightingPreset.Ultra:
|
|
return 4;
|
|
case VolumetricLightingPreset.Off:
|
|
return 0;
|
|
default:
|
|
Debug.Assert(false, "Encountered an unexpected VolumetricLightingPreset.");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int ComputeVBufferSliceCount(VolumetricLightingPreset preset)
|
|
{
|
|
switch (preset)
|
|
{
|
|
case VolumetricLightingPreset.Normal:
|
|
return 64;
|
|
case VolumetricLightingPreset.Ultra:
|
|
return 128;
|
|
case VolumetricLightingPreset.Off:
|
|
return 0;
|
|
default:
|
|
Debug.Assert(false, "Encountered an unexpected VolumetricLightingPreset.");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static Vector3Int ComputeVBufferResolution(VolumetricLightingPreset preset,
|
|
int screenWidth, int screenHeight)
|
|
{
|
|
int t = ComputeVBufferTileSize(preset);
|
|
|
|
// ceil(ScreenSize / TileSize).
|
|
int w = (screenWidth + (t - 1)) / t;
|
|
int h = (screenHeight + (t - 1)) / t;
|
|
int d = ComputeVBufferSliceCount(preset);
|
|
|
|
return new Vector3Int(w, h, d);
|
|
}
|
|
|
|
// See EncodeLogarithmicDepthGeneralized().
|
|
static Vector4 ComputeLogarithmicDepthEncodingParams(float nearPlane, float farPlane, float c)
|
|
{
|
|
Vector4 depthParams = new Vector4();
|
|
|
|
float n = nearPlane;
|
|
float f = farPlane;
|
|
|
|
c = Mathf.Max(c, 0.001f); // Avoid NaNs
|
|
|
|
depthParams.y = 1.0f / Mathf.Log(c * (f - n) + 1, 2);
|
|
depthParams.x = Mathf.Log(c, 2) * depthParams.y;
|
|
depthParams.z = n - 1.0f / c; // Same
|
|
depthParams.w = 0.0f;
|
|
|
|
return depthParams;
|
|
}
|
|
|
|
// See DecodeLogarithmicDepthGeneralized().
|
|
static Vector4 ComputeLogarithmicDepthDecodingParams(float nearPlane, float farPlane, float c)
|
|
{
|
|
Vector4 depthParams = new Vector4();
|
|
|
|
float n = nearPlane;
|
|
float f = farPlane;
|
|
|
|
c = Mathf.Max(c, 0.001f); // Avoid NaNs
|
|
|
|
depthParams.x = 1.0f / c;
|
|
depthParams.y = Mathf.Log(c * (f - n) + 1, 2);
|
|
depthParams.z = n - 1.0f / c; // Same
|
|
depthParams.w = 0.0f;
|
|
|
|
return depthParams;
|
|
}
|
|
|
|
void SetPreconvolvedAmbientLightProbe(CommandBuffer cmd, float anisotropy)
|
|
{
|
|
SphericalHarmonicsL2 probeSH = SphericalHarmonicMath.UndoCosineRescaling(RenderSettings.ambientProbe);
|
|
ZonalHarmonicsL2 phaseZH = ZonalHarmonicsL2.GetCornetteShanksPhaseFunction(anisotropy);
|
|
SphericalHarmonicsL2 finalSH = SphericalHarmonicMath.PremultiplyCoefficients(SphericalHarmonicMath.Convolve(probeSH, phaseZH));
|
|
|
|
cmd.SetGlobalVectorArray(HDShaderIDs._AmbientProbeCoeffs, SphericalHarmonicMath.PackCoefficients(finalSH));
|
|
}
|
|
|
|
float CornetteShanksPhasePartConstant(float anisotropy)
|
|
{
|
|
float g = anisotropy;
|
|
|
|
return (1.0f / (4.0f * Mathf.PI)) * 1.5f * (1.0f - g * g) / (2.0f + g * g);
|
|
}
|
|
|
|
public void PushGlobalParams(HDCamera camera, CommandBuffer cmd, uint frameIndex)
|
|
{
|
|
if (preset == VolumetricLightingPreset.Off) return;
|
|
|
|
var visualEnvironment = VolumeManager.instance.stack.GetComponent<VisualEnvironment>();
|
|
|
|
// VisualEnvironment sets global fog parameters: _GlobalAnisotropy, _GlobalScattering, _GlobalExtinction.
|
|
|
|
if (visualEnvironment.fogType != FogType.Volumetric)
|
|
{
|
|
// Set the neutral black texture.
|
|
cmd.SetGlobalTexture(HDShaderIDs._VBufferLighting, CoreUtils.blackVolumeTexture);
|
|
return;
|
|
}
|
|
|
|
// Get the interpolated anisotropy value.
|
|
var fog = VolumeManager.instance.stack.GetComponent<VolumetricFog>();
|
|
|
|
SetPreconvolvedAmbientLightProbe(cmd, fog.anisotropy);
|
|
|
|
var currFrameParams = camera.vBufferParams[0];
|
|
var prevFrameParams = camera.vBufferParams[1];
|
|
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferResolution, currFrameParams.resolution);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferSliceCount, currFrameParams.sliceCount);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferUvScaleAndLimit, currFrameParams.uvScaleAndLimit);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferDepthEncodingParams, currFrameParams.depthEncodingParams);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferDepthDecodingParams, currFrameParams.depthDecodingParams);
|
|
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferPrevResolution, prevFrameParams.resolution);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferPrevSliceCount, prevFrameParams.sliceCount);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferPrevUvScaleAndLimit, prevFrameParams.uvScaleAndLimit);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferPrevDepthEncodingParams, prevFrameParams.depthEncodingParams);
|
|
cmd.SetGlobalVector( HDShaderIDs._VBufferPrevDepthDecodingParams, prevFrameParams.depthDecodingParams);
|
|
|
|
cmd.SetGlobalTexture(HDShaderIDs._VBufferLighting, m_LightingBufferHandle);
|
|
}
|
|
|
|
public DensityVolumeList PrepareVisibleDensityVolumeList(HDCamera camera, CommandBuffer cmd)
|
|
{
|
|
DensityVolumeList densityVolumes = new DensityVolumeList();
|
|
|
|
if (preset == VolumetricLightingPreset.Off) return densityVolumes;
|
|
|
|
var visualEnvironment = VolumeManager.instance.stack.GetComponent<VisualEnvironment>();
|
|
if (visualEnvironment.fogType != FogType.Volumetric) return densityVolumes;
|
|
|
|
using (new ProfilingSample(cmd, "Prepare Visible Density Volume List"))
|
|
{
|
|
Vector3 camPosition = camera.camera.transform.position;
|
|
Vector3 camOffset = Vector3.zero; // World-origin-relative
|
|
|
|
if (ShaderConfig.s_CameraRelativeRendering != 0)
|
|
{
|
|
camOffset = camPosition; // Camera-relative
|
|
}
|
|
|
|
m_VisibleVolumeBounds.Clear();
|
|
m_VisibleVolumeData.Clear();
|
|
|
|
// Collect all visible finite volume data, and upload it to the GPU.
|
|
DensityVolume[] volumes = DensityVolumeManager.manager.PrepareDensityVolumeData(cmd);
|
|
|
|
for (int i = 0; i < Math.Min(volumes.Length, k_MaxVisibleVolumeCount); i++)
|
|
{
|
|
DensityVolume volume = volumes[i];
|
|
|
|
// TODO: cache these?
|
|
var obb = OrientedBBox.Create(volume.transform);
|
|
|
|
// Handle camera-relative rendering.
|
|
obb.center -= camOffset;
|
|
|
|
// Frustum cull on the CPU for now. TODO: do it on the GPU.
|
|
// TODO: account for custom near and far planes of the V-Buffer's frustum.
|
|
// It's typically much shorter (along the Z axis) than the camera's frustum.
|
|
if (GeometryUtils.Overlap(obb, camera.frustum, 6, 8))
|
|
{
|
|
// TODO: cache these?
|
|
var data = volume.parameters.GetData();
|
|
|
|
m_VisibleVolumeBounds.Add(obb);
|
|
m_VisibleVolumeData.Add(data);
|
|
}
|
|
}
|
|
|
|
s_VisibleVolumeBoundsBuffer.SetData(m_VisibleVolumeBounds);
|
|
s_VisibleVolumeDataBuffer.SetData(m_VisibleVolumeData);
|
|
|
|
// Fill the struct with pointers in order to share the data with the light loop.
|
|
densityVolumes.bounds = m_VisibleVolumeBounds;
|
|
densityVolumes.density = m_VisibleVolumeData;
|
|
|
|
return densityVolumes;
|
|
}
|
|
}
|
|
|
|
public void VolumeVoxelizationPass(DensityVolumeList densityVolumes, HDCamera camera, CommandBuffer cmd, FrameSettings settings, uint frameIndex)
|
|
{
|
|
if (preset == VolumetricLightingPreset.Off) return;
|
|
|
|
var visualEnvironment = VolumeManager.instance.stack.GetComponent<VisualEnvironment>();
|
|
if (visualEnvironment.fogType != FogType.Volumetric) return;
|
|
|
|
using (new ProfilingSample(cmd, "Volume Voxelization"))
|
|
{
|
|
int numVisibleVolumes = m_VisibleVolumeBounds.Count;
|
|
|
|
if (numVisibleVolumes == 0)
|
|
{
|
|
// Clear the render target instead of running the shader.
|
|
// Note: the clear must take the global fog into account!
|
|
// CoreUtils.SetRenderTarget(cmd, vBuffer.GetDensityBuffer(), ClearFlag.Color, CoreUtils.clearColorAllBlack);
|
|
// return;
|
|
|
|
// Clearing 3D textures does not seem to work!
|
|
// Use the workaround by running the full shader with 0 density
|
|
}
|
|
|
|
bool enableClustered = settings.lightLoopSettings.enableTileAndCluster;
|
|
|
|
int kernel = m_VolumeVoxelizationCS.FindKernel(enableClustered ? "VolumeVoxelizationClustered"
|
|
: "VolumeVoxelizationBruteforce");
|
|
|
|
var frameParams = camera.vBufferParams[0];
|
|
Vector4 resolution = frameParams.resolution;
|
|
float vFoV = camera.camera.fieldOfView * Mathf.Deg2Rad;
|
|
|
|
// Compose the matrix which allows us to compute the world space view direction.
|
|
Matrix4x4 transform = HDUtils.ComputePixelCoordToWorldSpaceViewDirectionMatrix(vFoV, resolution, camera.viewMatrix, false);
|
|
|
|
Texture3D volumeAtlas = DensityVolumeManager.manager.volumeAtlas.volumeAtlas;
|
|
Vector2 volumeAtlasDimensions = new Vector2(0.0f, 0.0f);
|
|
|
|
if (volumeAtlas != null)
|
|
{
|
|
volumeAtlasDimensions.x = volumeAtlas.width / volumeAtlas.depth; // 1 / number of textures
|
|
volumeAtlasDimensions.y = 1.0f / volumeAtlas.width;
|
|
}
|
|
|
|
cmd.SetComputeTextureParam(m_VolumeVoxelizationCS, kernel, HDShaderIDs._VBufferDensity, m_DensityBufferHandle);
|
|
cmd.SetComputeBufferParam( m_VolumeVoxelizationCS, kernel, HDShaderIDs._VolumeBounds, s_VisibleVolumeBoundsBuffer);
|
|
cmd.SetComputeBufferParam( m_VolumeVoxelizationCS, kernel, HDShaderIDs._VolumeData, s_VisibleVolumeDataBuffer);
|
|
cmd.SetComputeTextureParam(m_VolumeVoxelizationCS, kernel, HDShaderIDs._VolumeMaskAtlas, volumeAtlas);
|
|
|
|
// TODO: set the constant buffer data only once.
|
|
cmd.SetComputeMatrixParam( m_VolumeVoxelizationCS, HDShaderIDs._VBufferCoordToViewDirWS, transform);
|
|
cmd.SetComputeIntParam( m_VolumeVoxelizationCS, HDShaderIDs._NumVisibleDensityVolumes, numVisibleVolumes);
|
|
cmd.SetComputeVectorParam(m_VolumeVoxelizationCS, HDShaderIDs._VolumeMaskDimensions, volumeAtlasDimensions);
|
|
|
|
int w = (int)resolution.x;
|
|
int h = (int)resolution.y;
|
|
|
|
// The shader defines GROUP_SIZE_1D = 8.
|
|
cmd.DispatchCompute(m_VolumeVoxelizationCS, kernel, (w + 7) / 8, (h + 7) / 8, 1);
|
|
}
|
|
}
|
|
|
|
// Ref: https://en.wikipedia.org/wiki/Close-packing_of_equal_spheres
|
|
// The returned {x, y} coordinates (and all spheres) are all within the (-0.5, 0.5)^2 range.
|
|
// The pattern has been rotated by 15 degrees to maximize the resolution along X and Y:
|
|
// https://www.desmos.com/calculator/kcpfvltz7c
|
|
static Vector2[] GetHexagonalClosePackedSpheres7()
|
|
{
|
|
Vector2[] coords = new Vector2[7];
|
|
|
|
float r = 0.17054068870105443882f;
|
|
float d = 2 * r;
|
|
float s = r * Mathf.Sqrt(3);
|
|
|
|
// Try to keep the weighted average as close to the center (0.5) as possible.
|
|
// (7)(5) ( )( ) ( )( ) ( )( ) ( )( ) ( )(o) ( )(x) (o)(x) (x)(x)
|
|
// (2)(1)(3) ( )(o)( ) (o)(x)( ) (x)(x)(o) (x)(x)(x) (x)(x)(x) (x)(x)(x) (x)(x)(x) (x)(x)(x)
|
|
// (4)(6) ( )( ) ( )( ) ( )( ) (o)( ) (x)( ) (x)(o) (x)(x) (x)(x)
|
|
coords[0] = new Vector2( 0, 0);
|
|
coords[1] = new Vector2(-d, 0);
|
|
coords[2] = new Vector2( d, 0);
|
|
coords[3] = new Vector2(-r, -s);
|
|
coords[4] = new Vector2( r, s);
|
|
coords[5] = new Vector2( r, -s);
|
|
coords[6] = new Vector2(-r, s);
|
|
|
|
// Rotate the sampling pattern by 15 degrees.
|
|
const float cos15 = 0.96592582628906828675f;
|
|
const float sin15 = 0.25881904510252076235f;
|
|
|
|
for (int i = 0; i < 7; i++)
|
|
{
|
|
Vector2 coord = coords[i];
|
|
|
|
coords[i].x = coord.x * cos15 - coord.y * sin15;
|
|
coords[i].y = coord.x * sin15 + coord.y * cos15;
|
|
}
|
|
|
|
return coords;
|
|
}
|
|
|
|
public void VolumetricLightingPass(HDCamera camera, CommandBuffer cmd, FrameSettings settings, uint frameIndex)
|
|
{
|
|
if (preset == VolumetricLightingPreset.Off) return;
|
|
|
|
var visualEnvironment = VolumeManager.instance.stack.GetComponent<VisualEnvironment>();
|
|
if (visualEnvironment.fogType != FogType.Volumetric) return;
|
|
|
|
using (new ProfilingSample(cmd, "Volumetric Lighting"))
|
|
{
|
|
// Only available in the Play Mode because all the frame counters in the Edit Mode are broken.
|
|
bool enableClustered = settings.lightLoopSettings.enableTileAndCluster;
|
|
bool enableReprojection = Application.isPlaying && camera.camera.cameraType == CameraType.Game;
|
|
|
|
int kernel;
|
|
|
|
if (enableReprojection)
|
|
{
|
|
kernel = m_VolumetricLightingCS.FindKernel(enableClustered ? "VolumetricLightingClusteredReproj"
|
|
: "VolumetricLightingBruteforceReproj");
|
|
}
|
|
else
|
|
{
|
|
kernel = m_VolumetricLightingCS.FindKernel(enableClustered ? "VolumetricLightingClustered"
|
|
: "VolumetricLightingBruteforce");
|
|
}
|
|
|
|
var frameParams = camera.vBufferParams[0];
|
|
Vector4 resolution = frameParams.resolution;
|
|
float vFoV = camera.camera.fieldOfView * Mathf.Deg2Rad;
|
|
// Compose the matrix which allows us to compute the world space view direction.
|
|
Matrix4x4 transform = HDUtils.ComputePixelCoordToWorldSpaceViewDirectionMatrix(vFoV, resolution, camera.viewMatrix, false);
|
|
|
|
Vector2[] xySeq = GetHexagonalClosePackedSpheres7();
|
|
|
|
// This is a sequence of 7 equidistant numbers from 1/14 to 13/14.
|
|
// Each of them is the centroid of the interval of length 2/14.
|
|
// They've been rearranged in a sequence of pairs {small, large}, s.t. (small + large) = 1.
|
|
// That way, the running average position is close to 0.5.
|
|
// | 6 | 2 | 4 | 1 | 5 | 3 | 7 |
|
|
// | | | | o | | | |
|
|
// | | o | | x | | | |
|
|
// | | x | | x | | o | |
|
|
// | | x | o | x | | x | |
|
|
// | | x | x | x | o | x | |
|
|
// | o | x | x | x | x | x | |
|
|
// | x | x | x | x | x | x | o |
|
|
// | x | x | x | x | x | x | x |
|
|
float[] zSeq = {7.0f/14.0f, 3.0f/14.0f, 11.0f/14.0f, 5.0f/14.0f, 9.0f/14.0f, 1.0f/14.0f, 13.0f/14.0f};
|
|
|
|
int sampleIndex = (int)frameIndex % 7;
|
|
|
|
// TODO: should we somehow reorder offsets in Z based on the offset in XY? S.t. the samples more evenly cover the domain.
|
|
// Currently, we assume that they are completely uncorrelated, but maybe we should correlate them somehow.
|
|
Vector4 offset = new Vector4(xySeq[sampleIndex].x, xySeq[sampleIndex].y, zSeq[sampleIndex], frameIndex);
|
|
|
|
// Get the interpolated anisotropy value.
|
|
var fog = VolumeManager.instance.stack.GetComponent<VolumetricFog>();
|
|
|
|
// TODO: set 'm_VolumetricLightingPreset'.
|
|
// TODO: set the constant buffer data only once.
|
|
cmd.SetComputeMatrixParam( m_VolumetricLightingCS, HDShaderIDs._VBufferCoordToViewDirWS, transform);
|
|
cmd.SetComputeVectorParam( m_VolumetricLightingCS, HDShaderIDs._VBufferSampleOffset, offset);
|
|
cmd.SetComputeFloatParam( m_VolumetricLightingCS, HDShaderIDs._CornetteShanksConstant, CornetteShanksPhasePartConstant(fog.anisotropy));
|
|
cmd.SetComputeTextureParam(m_VolumetricLightingCS, kernel, HDShaderIDs._VBufferDensity, m_DensityBufferHandle); // Read
|
|
cmd.SetComputeTextureParam(m_VolumetricLightingCS, kernel, HDShaderIDs._VBufferLightingIntegral, m_LightingBufferHandle); // Write
|
|
if (enableReprojection)
|
|
{
|
|
cmd.SetComputeTextureParam(m_VolumetricLightingCS, kernel, HDShaderIDs._VBufferLightingHistory, camera.GetPreviousFrameRT((int)HDCameraFrameHistoryType.VolumetricLighting)); // Read
|
|
cmd.SetComputeTextureParam(m_VolumetricLightingCS, kernel, HDShaderIDs._VBufferLightingFeedback, camera.GetCurrentFrameRT((int)HDCameraFrameHistoryType.VolumetricLighting)); // Write
|
|
}
|
|
|
|
int w = (int)resolution.x;
|
|
int h = (int)resolution.y;
|
|
|
|
// The shader defines GROUP_SIZE_1D = 8.
|
|
cmd.DispatchCompute(m_VolumetricLightingCS, kernel, (w + 7) / 8, (h + 7) / 8, 1);
|
|
}
|
|
}
|
|
} // class VolumetricLightingModule
|
|
} // namespace UnityEngine.Experimental.Rendering.HDPipeline
|