113 行
4.6 KiB

// This is implementation of parallax occlusion mapping (POM)
// This function require that the caller define a callback for the height sampling name ComputePerPixelHeightDisplacement
// A PerPixelHeightDisplacementParam is used to provide all data necessary to calculate the heights to ComputePerPixelHeightDisplacement it doesn't need to be
// visible by the POM algorithm.
// This function is compatible with tiled uv.
// it return the offset to apply to the UVSet provide in PerPixelHeightDisplacementParam
// viewDirTS is view vector in texture space matching the UVSet
// ref: https://www.gamedev.net/resources/_/technical/graphics-programming-and-theory/a-closer-look-at-parallax-occlusion-mapping-r3262
real2 ParallaxOcclusionMapping(real lod, real lodThreshold, int numSteps, real3 viewDirTS, PerPixelHeightDisplacementParam ppdParam, out real outHeight)
{
// Convention: 1.0 is top, 0.0 is bottom - POM is always inward, no extrusion
real stepSize = 1.0 / (real)numSteps;
// View vector is from the point to the camera, but we want to raymarch from camera to point, so reverse the sign
// The length of viewDirTS vector determines the furthest amount of displacement:
// real parallaxLimit = -length(viewDirTS.xy) / viewDirTS.z;
// real2 parallaxDir = normalize(Out.viewDirTS.xy);
// real2 parallaxMaxOffsetTS = parallaxDir * parallaxLimit;
// Above code simplify to
real2 parallaxMaxOffsetTS = (viewDirTS.xy / -viewDirTS.z);
real2 texOffsetPerStep = stepSize * parallaxMaxOffsetTS;
// Do a first step before the loop to init all value correctly
real2 texOffsetCurrent = real2(0.0, 0.0);
real prevHeight = ComputePerPixelHeightDisplacement(texOffsetCurrent, lod, ppdParam);
texOffsetCurrent += texOffsetPerStep;
real currHeight = ComputePerPixelHeightDisplacement(texOffsetCurrent, lod, ppdParam);
real rayHeight = 1.0 - stepSize; // Start at top less one sample
// Linear search
for (int stepIndex = 0; stepIndex < numSteps; ++stepIndex)
{
// Have we found a height below our ray height ? then we have an intersection
if (currHeight > rayHeight)
break; // end the loop
prevHeight = currHeight;
rayHeight -= stepSize;
texOffsetCurrent += texOffsetPerStep;
// Sample height map which in this case is stored in the alpha channel of the normal map:
currHeight = ComputePerPixelHeightDisplacement(texOffsetCurrent, lod, ppdParam);
}
// Found below and above points, now perform line interesection (ray) with piecewise linear heightfield approximation
// Refine the search with secant method
#define POM_SECANT_METHOD 1
#if POM_SECANT_METHOD
real pt0 = rayHeight + stepSize;
real pt1 = rayHeight;
real delta0 = pt0 - prevHeight;
real delta1 = pt1 - currHeight;
real delta;
real2 offset;
// Secant method to affine the search
// Ref: Faster Relief Mapping Using the Secant Method - Eric Risser
for (int i = 0; i < 3; ++i)
{
// intersectionHeight is the height [0..1] for the intersection between view ray and heightfield line
real intersectionHeight = (pt0 * delta1 - pt1 * delta0) / (delta1 - delta0);
// Retrieve offset require to find this intersectionHeight
offset = (1 - intersectionHeight) * texOffsetPerStep * numSteps;
currHeight = ComputePerPixelHeightDisplacement(offset, lod, ppdParam);
delta = intersectionHeight - currHeight;
if (abs(delta) <= 0.01)
break;
// intersectionHeight < currHeight => new lower bounds
if (delta < 0.0)
{
delta1 = delta;
pt1 = intersectionHeight;
}
else
{
delta0 = delta;
pt0 = intersectionHeight;
}
}
#else // regular POM intersection
//real pt0 = rayHeight + stepSize;
//real pt1 = rayHeight;
//real delta0 = pt0 - prevHeight;
//real delta1 = pt1 - currHeight;
//real intersectionHeight = (pt0 * delta1 - pt1 * delta0) / (delta1 - delta0);
//real2 offset = (1 - intersectionHeight) * texOffsetPerStep * numSteps;
// A bit more optimize
real delta0 = currHeight - rayHeight;
real delta1 = (rayHeight + stepSize) - prevHeight;
real ratio = delta0 / (delta0 + delta1);
real2 offset = texOffsetCurrent - ratio * texOffsetPerStep;
currHeight = ComputePerPixelHeightDisplacement(offset, lod, ppdParam);
#endif
outHeight = currHeight;
// Fade the effect with lod (allow to avoid pop when switching to a discrete LOD mesh)
offset *= (1.0 - saturate(lod - lodThreshold));
return offset;
}