您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
258 行
9.6 KiB
258 行
9.6 KiB
#ifndef UNITY_GEOMETRICTOOLS_INCLUDED
|
|
#define UNITY_GEOMETRICTOOLS_INCLUDED
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Intersection functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// return furthest near intersection in x and closest far intersection in y
|
|
// if (intersections.y > intersections.x) the ray hit the box, else it miss it
|
|
// Assume dir is normalize
|
|
float2 BoxRayIntersect(float3 start, float3 dir, float3 boxMin, float3 boxMax)
|
|
{
|
|
float3 invDir = 1.0 / dir;
|
|
|
|
// Find the ray intersection with box plane
|
|
float3 firstPlaneIntersect = (boxMin - start) * invDir;
|
|
float3 secondPlaneIntersect = (boxMax - start) * invDir;
|
|
|
|
// Get the closest/furthest of these intersections along the ray (Ok because x/0 give +inf and -x/0 give �inf )
|
|
float3 closestPlane = min(firstPlaneIntersect, secondPlaneIntersect);
|
|
float3 furthestPlane = max(firstPlaneIntersect, secondPlaneIntersect);
|
|
|
|
float2 intersections;
|
|
// Find the furthest near intersection
|
|
intersections.x = max(closestPlane.x, max(closestPlane.y, closestPlane.z));
|
|
// Find the closest far intersection
|
|
intersections.y = min(min(furthestPlane.x, furthestPlane.y), furthestPlane.z);
|
|
|
|
return intersections;
|
|
}
|
|
|
|
// This simplified version assume that we care about the result only when we are inside the box
|
|
// Assume dir is normalize
|
|
float BoxRayIntersectSimple(float3 start, float3 dir, float3 boxMin, float3 boxMax)
|
|
{
|
|
float3 invDir = 1.0 / dir;
|
|
|
|
// Find the ray intersection with box plane
|
|
float3 rbmin = (boxMin - start) * invDir;
|
|
float3 rbmax = (boxMax - start) * invDir;
|
|
|
|
float3 rbminmax = (dir > 0.0) ? rbmax : rbmin;
|
|
|
|
return min(min(rbminmax.x, rbminmax.y), rbminmax.z);
|
|
}
|
|
|
|
// Assume Sphere is at the origin (i.e start = position - spherePosition)
|
|
float2 SphereRayIntersect(float3 start, float3 dir, float radius, out bool intersect)
|
|
{
|
|
float a = dot(dir, dir);
|
|
float b = dot(dir, start) * 2.0;
|
|
float c = dot(start, start) - radius * radius;
|
|
float discriminant = b * b - 4.0 * a * c;
|
|
|
|
float2 intersections = float2(0.0, 0.0);
|
|
intersect = false;
|
|
if (discriminant < 0.0 || a == 0.0)
|
|
{
|
|
intersections.x = 0.0;
|
|
intersections.y = 0.0;
|
|
}
|
|
else
|
|
{
|
|
float sqrtDiscriminant = sqrt(discriminant);
|
|
intersections.x = (-b - sqrtDiscriminant) / (2.0 * a);
|
|
intersections.y = (-b + sqrtDiscriminant) / (2.0 * a);
|
|
intersect = true;
|
|
}
|
|
|
|
return intersections;
|
|
}
|
|
|
|
// This simplified version assume that we care about the result only when we are inside the sphere
|
|
// Assume Sphere is at the origin (i.e start = position - spherePosition) and dir is normalized
|
|
// Ref: http://http.developer.nvidia.com/GPUGems/gpugems_ch19.html
|
|
float SphereRayIntersectSimple(float3 start, float3 dir, float radius)
|
|
{
|
|
float b = dot(dir, start) * 2.0;
|
|
float c = dot(start, start) - radius * radius;
|
|
float discriminant = b * b - 4.0 * c;
|
|
|
|
return abs(sqrt(discriminant) - b) * 0.5;
|
|
}
|
|
|
|
float3 RayPlaneIntersect(in float3 rayOrigin, in float3 rayDirection, in float3 planeOrigin, in float3 planeNormal)
|
|
{
|
|
float dist = dot(planeNormal, planeOrigin - rayOrigin) / dot(planeNormal, rayDirection);
|
|
return rayOrigin + rayDirection * dist;
|
|
}
|
|
|
|
// Solves the quadratic equation of the form: a*t^2 + b*t + c = 0.
|
|
// Returns 'false' if there are no real roots, 'true' otherwise.
|
|
// Ref: Numerical Recipes in C++ (3rd Edition)
|
|
bool SolveQuadraticEquation(float a, float b, float c, out float2 roots)
|
|
{
|
|
float d = b * b - 4 * a * c;
|
|
float q = -0.5 * (b + FastSign(b) * sqrt(d));
|
|
roots = float2(q / a, c / q);
|
|
|
|
return (d >= 0);
|
|
}
|
|
|
|
// Can support cones with an elliptic base: pre-scale 'coneAxisX' and 'coneAxisY' by (h/r_x) and (h/r_y).
|
|
// Returns parametric distances 'tEntr' and 'tExit' along the ray,
|
|
// subject to constraints 'tMin' and 'tMax'.
|
|
bool IntersectRayCone(float3 rayOrigin, float3 rayDirection,
|
|
float3 coneOrigin, float3 coneDirection,
|
|
float3 coneAxisX, float3 coneAxisY,
|
|
float tMin, float tMax,
|
|
out float tEntr, out float tExit)
|
|
{
|
|
// Inverse transform the ray into a coordinate system with the cone at the origin facing along the Z axis.
|
|
float3x3 rotMat = float3x3(coneAxisX, coneAxisY, coneDirection);
|
|
|
|
float3 o = mul(rotMat, rayOrigin - coneOrigin);
|
|
float3 d = mul(rotMat, rayDirection);
|
|
|
|
// Cone equation (facing along Z): (h/r*x)^2 + (h/r*y)^2 - z^2 = 0.
|
|
// Cone axes are premultiplied with (h/r).
|
|
// Set up the quadratic equation: a*t^2 + b*t + c = 0.
|
|
float a = d.x * d.x + d.y * d.y - d.z * d.z;
|
|
float b = o.x * d.x + o.y * d.y - o.z * d.z;
|
|
float c = o.x * o.x + o.y * o.y - o.z * o.z;
|
|
|
|
float2 roots;
|
|
|
|
// Check whether we have at least 1 root.
|
|
bool hit = SolveQuadraticEquation(a, 2 * b, c, roots);
|
|
|
|
tEntr = min(roots.x, roots.y);
|
|
tExit = max(roots.x, roots.y);
|
|
float3 pEntr = o + tEntr * d;
|
|
float3 pExit = o + tExit * d;
|
|
|
|
// Clip the negative cone.
|
|
bool pEntrNeg = pEntr.z < 0;
|
|
bool pExitNeg = pExit.z < 0;
|
|
if (pEntrNeg && pExitNeg) { hit = false; }
|
|
if (pEntrNeg) { tEntr = tExit; tExit = tMax; }
|
|
if (pExitNeg) { tExit = tEntr; tEntr = tMin; }
|
|
|
|
// Clamp using the values passed into the function.
|
|
tEntr = clamp(tEntr, tMin, tMax);
|
|
tExit = clamp(tExit, tMin, tMax);
|
|
|
|
// Check for grazing intersections.
|
|
if (tEntr == tExit) { hit = false; }
|
|
|
|
return hit;
|
|
}
|
|
|
|
// This implementation does not attempt to explicitly handle NaNs.
|
|
// Ref: https://tavianator.com/fast-branchless-raybounding-box-intersections-part-2-nans/
|
|
bool IntersectRayAABB(float3 rayOrigin, float3 rayDirection,
|
|
float3 boxPt0, float3 boxPt1,
|
|
float tMin, float tMax,
|
|
out float tEntr, out float tExit)
|
|
{
|
|
float3 rayDirInv = rcp(rayDirection); // Could be precomputed
|
|
|
|
tEntr = tMin;
|
|
tExit = tMax;
|
|
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
float t0 = boxPt0[i] * rayDirInv[i] - (rayOrigin[i] * rayDirInv[i]);
|
|
float t1 = boxPt1[i] * rayDirInv[i] - (rayOrigin[i] * rayDirInv[i]);
|
|
|
|
tEntr = max(tEntr, min(t0, t1)); // Farthest entry
|
|
tExit = min(tExit, max(t0, t1)); // Nearest exit
|
|
}
|
|
|
|
return tEntr < tExit;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Miscellaneous functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Box is AABB
|
|
float DistancePointBox(float3 position, float3 boxMin, float3 boxMax)
|
|
{
|
|
return length(max(max(position - boxMax, boxMin - position), float3(0.0, 0.0, 0.0)));
|
|
}
|
|
|
|
float3 ProjectPointOnPlane(float3 position, float3 planePosition, float3 planeNormal)
|
|
{
|
|
return position - (dot(position - planePosition, planeNormal) * planeNormal);
|
|
}
|
|
|
|
// Plane equation: {(a, b, c) = N, d = -dot(N, P)}.
|
|
// Returns the distance from the plane to the point 'p' along the normal.
|
|
// Positive -> in front (above), negative -> behind (below).
|
|
float DistanceFromPlane(float3 p, float4 plane)
|
|
{
|
|
return dot(float4(p, 1.0), plane);
|
|
}
|
|
|
|
// Returns 'true' if the triangle is outside of the frustum.
|
|
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
|
|
bool CullTriangleFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
|
|
{
|
|
bool outside = false;
|
|
|
|
for (int i = 0; i < numPlanes; i++)
|
|
{
|
|
// If all 3 points are behind any of the planes, we cull.
|
|
outside = outside || Max3(DistanceFromPlane(p0, frustumPlanes[i]),
|
|
DistanceFromPlane(p1, frustumPlanes[i]),
|
|
DistanceFromPlane(p2, frustumPlanes[i])) < epsilon;
|
|
}
|
|
|
|
return outside;
|
|
}
|
|
|
|
// Returns 'true' if the edge of the triangle is outside of the frustum.
|
|
// The edges are defined s.t. they are on the opposite side of the point with the given index.
|
|
// 'epsilon' is the (negative) distance to (outside of) the frustum below which we cull the triangle.
|
|
bool3 CullTriangleEdgesFrustum(float3 p0, float3 p1, float3 p2, float epsilon, float4 frustumPlanes[6], int numPlanes)
|
|
{
|
|
bool3 edgesOutside = false;
|
|
|
|
for (int i = 0; i < numPlanes; i++)
|
|
{
|
|
bool3 pointsOutside = bool3(DistanceFromPlane(p0, frustumPlanes[i]) < epsilon,
|
|
DistanceFromPlane(p1, frustumPlanes[i]) < epsilon,
|
|
DistanceFromPlane(p2, frustumPlanes[i]) < epsilon);
|
|
|
|
// If both points of the edge are behind any of the planes, we cull.
|
|
edgesOutside.x = edgesOutside.x || (pointsOutside.y && pointsOutside.z);
|
|
edgesOutside.y = edgesOutside.y || (pointsOutside.x && pointsOutside.z);
|
|
edgesOutside.z = edgesOutside.z || (pointsOutside.x && pointsOutside.y);
|
|
}
|
|
|
|
return edgesOutside;
|
|
}
|
|
|
|
// Returns 'true' if a triangle defined by 3 vertices is back-facing.
|
|
// 'epsilon' is the (negative) value of dot(N, V) below which we cull the triangle.
|
|
// 'winding' can be used to change the order: pass 1 for (p0 -> p1 -> p2), or -1 for (p0 -> p2 -> p1).
|
|
bool CullTriangleBackFace(float3 p0, float3 p1, float3 p2, float epsilon, float3 viewPos, float winding)
|
|
{
|
|
float3 edge1 = p1 - p0;
|
|
float3 edge2 = p2 - p0;
|
|
|
|
float3 N = cross(edge1, edge2);
|
|
float3 V = viewPos - p0;
|
|
float NdotV = dot(N, V) * winding;
|
|
|
|
// Optimize:
|
|
// NdotV / (length(N) * length(V)) < Epsilon
|
|
// NdotV < Epsilon * length(N) * length(V)
|
|
// NdotV < Epsilon * sqrt(dot(N, N)) * sqrt(dot(V, V))
|
|
// NdotV < Epsilon * sqrt(dot(N, N) * dot(V, V))
|
|
return NdotV < epsilon * sqrt(dot(N, N) * dot(V, V));
|
|
}
|
|
|
|
#endif // UNITY_GEOMETRICTOOLS_INCLUDED
|