您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
615 行
23 KiB
615 行
23 KiB
#ifndef UNITY_IMAGE_BASED_LIGHTING_INCLUDED
|
|
#define UNITY_IMAGE_BASED_LIGHTING_INCLUDED
|
|
|
|
#include "CommonLighting.hlsl"
|
|
#include "CommonMaterial.hlsl"
|
|
#include "BSDF.hlsl"
|
|
#include "Sampling.hlsl"
|
|
|
|
#ifndef UNITY_SPECCUBE_LOD_STEPS
|
|
#define UNITY_SPECCUBE_LOD_STEPS 6
|
|
#endif
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Util image based lighting
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// The *approximated* version of the non-linear remapping. It works by
|
|
// approximating the cone of the specular lobe, and then computing the MIP map level
|
|
// which (approximately) covers the footprint of the lobe with a single texel.
|
|
// Improves the perceptual roughness distribution.
|
|
float PerceptualRoughnessToMipmapLevel(float perceptualRoughness, uint mipMapCount)
|
|
{
|
|
perceptualRoughness = perceptualRoughness * (1.7 - 0.7 * perceptualRoughness);
|
|
|
|
return perceptualRoughness * mipMapCount;
|
|
}
|
|
|
|
float PerceptualRoughnessToMipmapLevel(float perceptualRoughness)
|
|
{
|
|
return PerceptualRoughnessToMipmapLevel(perceptualRoughness, UNITY_SPECCUBE_LOD_STEPS);
|
|
}
|
|
|
|
// The *accurate* version of the non-linear remapping. It works by
|
|
// approximating the cone of the specular lobe, and then computing the MIP map level
|
|
// which (approximately) covers the footprint of the lobe with a single texel.
|
|
// Improves the perceptual roughness distribution and adds reflection (contact) hardening.
|
|
// TODO: optimize!
|
|
float PerceptualRoughnessToMipmapLevel(float perceptualRoughness, float NdotR)
|
|
{
|
|
float m = PerceptualRoughnessToRoughness(perceptualRoughness);
|
|
|
|
// Remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf
|
|
float n = (2.0 / max(FLT_EPSILON, m * m)) - 2.0;
|
|
|
|
// Remap from n_dot_h formulation to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html
|
|
n /= (4.0 * max(NdotR, FLT_EPSILON));
|
|
|
|
// remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness)
|
|
perceptualRoughness = pow(2.0 / (n + 2.0), 0.25);
|
|
|
|
return perceptualRoughness * UNITY_SPECCUBE_LOD_STEPS;
|
|
}
|
|
|
|
// The inverse of the *approximated* version of perceptualRoughnessToMipmapLevel().
|
|
float MipmapLevelToPerceptualRoughness(float mipmapLevel)
|
|
{
|
|
float perceptualRoughness = saturate(mipmapLevel / UNITY_SPECCUBE_LOD_STEPS);
|
|
|
|
return saturate(1.7 / 1.4 - sqrt(2.89 / 1.96 - (2.8 / 1.96) * perceptualRoughness));
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Anisotropic image based lighting
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Ref: Donald Revie - Implementing Fur Using Deferred Shading (GPU Pro 2)
|
|
// The grain direction (e.g. hair or brush direction) is assumed to be orthogonal to the normal.
|
|
// The returned normal is NOT normalized.
|
|
float3 ComputeGrainNormal(float3 grainDir, float3 V)
|
|
{
|
|
float3 B = cross(grainDir, V);
|
|
return cross(B, grainDir);
|
|
}
|
|
|
|
// Fake anisotropy by distorting the normal (non-negative anisotropy values only).
|
|
// The grain direction (e.g. hair or brush direction) is assumed to be orthogonal to N.
|
|
// Anisotropic ratio (0->no isotropic; 1->full anisotropy in tangent direction)
|
|
float3 GetAnisotropicModifiedNormal(float3 grainDir, float3 N, float3 V, float anisotropy)
|
|
{
|
|
float3 grainNormal = ComputeGrainNormal(grainDir, V);
|
|
// TODO: test whether normalizing 'grainNormal' is worth it.
|
|
return normalize(lerp(N, grainNormal, anisotropy));
|
|
}
|
|
|
|
// Ref: "Moving Frostbite to PBR", p. 69.
|
|
float3 GetSpecularDominantDir(float3 N, float3 R, float roughness, float NdotV)
|
|
{
|
|
float a = 1.0 - roughness;
|
|
float s = sqrt(a);
|
|
|
|
#ifdef USE_FB_DSD
|
|
// This is the original formulation.
|
|
float lerpFactor = (s + roughness) * a;
|
|
#else
|
|
// TODO: tweak this further to achieve a closer match to the reference.
|
|
float lerpFactor = (s + roughness) * saturate(a * a + lerp(0.0, a, NdotV * NdotV));
|
|
#endif
|
|
|
|
// The result is not normalized as we fetch in a cubemap
|
|
return lerp(N, R, lerpFactor);
|
|
}
|
|
|
|
// To simulate the streching of highlight at grazing angle for IBL we shrink the roughness
|
|
// which allow to fake an anisotropic specular lobe.
|
|
// Ref: http://www.frostbite.com/2015/08/stochastic-screen-space-reflections/ - slide 84
|
|
float AnisotropicStrechAtGrazingAngle(float roughness, float perceptualRoughness, float NdotV)
|
|
{
|
|
return roughness * lerp(saturate(NdotV * 2.0), 1.0, perceptualRoughness);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Importance sampling BSDF functions
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void SampleGGXDir(float2 u,
|
|
float3 V,
|
|
float3x3 localToWorld,
|
|
float roughness,
|
|
out float3 L,
|
|
out float NdotL,
|
|
out float NdotH,
|
|
out float VdotH,
|
|
bool VeqN = false)
|
|
{
|
|
// GGX NDF sampling
|
|
float cosTheta = sqrt((1.0 - u.x) / (1.0 + (roughness * roughness - 1.0) * u.x));
|
|
float phi = TWO_PI * u.y;
|
|
|
|
float3 localH = SphericalToCartesian(phi, cosTheta);
|
|
|
|
NdotH = cosTheta;
|
|
|
|
float3 localV;
|
|
|
|
if (VeqN)
|
|
{
|
|
// localV == localN
|
|
localV = float3(0.0, 0.0, 1.0);
|
|
VdotH = NdotH;
|
|
}
|
|
else
|
|
{
|
|
localV = mul(V, transpose(localToWorld));
|
|
VdotH = saturate(dot(localV, localH));
|
|
}
|
|
|
|
// Compute { localL = reflect(-localV, localH) }
|
|
float3 localL = -localV + 2.0 * VdotH * localH;
|
|
NdotL = localL.z;
|
|
|
|
L = mul(localL, localToWorld);
|
|
}
|
|
|
|
// Ref: "A Simpler and Exact Sampling Routine for the GGX Distribution of Visible Normals".
|
|
void SampleVisibleAnisoGGXDir(float2 u, float3 V, float3x3 localToWorld,
|
|
float roughnessT, float roughnessB,
|
|
out float3 L,
|
|
out float NdotL,
|
|
out float NdotH,
|
|
out float VdotH,
|
|
bool VeqN = false)
|
|
{
|
|
float3 localV = mul(V, transpose(localToWorld));
|
|
|
|
// Construct an orthonormal basis around the stretched view direction.
|
|
float3x3 viewToLocal;
|
|
if (VeqN)
|
|
{
|
|
viewToLocal = k_identity3x3;
|
|
}
|
|
else
|
|
{
|
|
viewToLocal[2] = normalize(float3(roughnessT * localV.x, roughnessB * localV.y, localV.z));
|
|
viewToLocal[0] = (viewToLocal[2].z < 0.9999) ? normalize(cross(viewToLocal[2], float3(0, 0, 1))) : float3(1, 0, 0);
|
|
viewToLocal[1] = cross(viewToLocal[0], viewToLocal[2]);
|
|
}
|
|
|
|
// Compute a sample point with polar coordinates (r, phi).
|
|
float r = sqrt(u.x);
|
|
float b = viewToLocal[2].z + 1;
|
|
float a = rcp(b);
|
|
float c = (u.y < a) ? u.y * b : 1 + (u.y * b - 1) / viewToLocal[2].z;
|
|
float phi = PI * c;
|
|
float p1 = r * cos(phi);
|
|
float p2 = r * sin(phi) * ((u.y < a) ? 1 : viewToLocal[2].z);
|
|
|
|
// Unstretch.
|
|
float3 viewH = normalize(float3(roughnessT * p1, roughnessB * p2, sqrt(1 - p1 * p1 - p2 * p2)));
|
|
VdotH = viewH.z;
|
|
|
|
float3 localH = mul(viewH, viewToLocal);
|
|
NdotH = localH.z;
|
|
|
|
// Compute { localL = reflect(-localV, localH) }
|
|
float3 localL = -localV + 2 * VdotH * localH;
|
|
NdotL = localL.z;
|
|
|
|
L = mul(localL, localToWorld);
|
|
}
|
|
|
|
// ref: http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf p26
|
|
void SampleAnisoGGXDir(float2 u,
|
|
float3 V,
|
|
float3 N,
|
|
float3 tangentX,
|
|
float3 tangentY,
|
|
float roughnessT,
|
|
float roughnessB,
|
|
out float3 H,
|
|
out float3 L)
|
|
{
|
|
// AnisoGGX NDF sampling
|
|
H = sqrt(u.x / (1.0 - u.x)) * (roughnessT * cos(TWO_PI * u.y) * tangentX + roughnessB * sin(TWO_PI * u.y) * tangentY) + N;
|
|
H = normalize(H);
|
|
|
|
// Convert sample from half angle to incident angle
|
|
L = 2.0 * saturate(dot(V, H)) * H - V;
|
|
}
|
|
|
|
// weightOverPdf return the weight (without the diffuseAlbedo term) over pdf. diffuseAlbedo term must be apply by the caller.
|
|
void ImportanceSampleLambert(float2 u,
|
|
float3x3 localToWorld,
|
|
out float3 L,
|
|
out float NdotL,
|
|
out float weightOverPdf)
|
|
{
|
|
float3 localL = SampleHemisphereCosine(u.x, u.y);
|
|
|
|
NdotL = localL.z;
|
|
|
|
L = mul(localL, localToWorld);
|
|
|
|
// Importance sampling weight for each sample
|
|
// pdf = N.L / PI
|
|
// weight = fr * (N.L) with fr = diffuseAlbedo / PI
|
|
// weight over pdf is:
|
|
// weightOverPdf = (diffuseAlbedo / PI) * (N.L) / (N.L / PI)
|
|
// weightOverPdf = diffuseAlbedo
|
|
// diffuseAlbedo is apply outside the function
|
|
|
|
weightOverPdf = 1.0;
|
|
}
|
|
|
|
// weightOverPdf return the weight (without the Fresnel term) over pdf. Fresnel term must be apply by the caller.
|
|
void ImportanceSampleGGX(float2 u,
|
|
float3 V,
|
|
float3x3 localToWorld,
|
|
float roughness,
|
|
float NdotV,
|
|
out float3 L,
|
|
out float VdotH,
|
|
out float NdotL,
|
|
out float weightOverPdf)
|
|
{
|
|
float NdotH;
|
|
SampleGGXDir(u, V, localToWorld, roughness, L, NdotL, NdotH, VdotH);
|
|
|
|
// Importance sampling weight for each sample
|
|
// pdf = D(H) * (N.H) / (4 * (L.H))
|
|
// weight = fr * (N.L) with fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V))
|
|
// weight over pdf is:
|
|
// weightOverPdf = F(H) * G(V, L) * (L.H) / ((N.H) * (N.V))
|
|
// weightOverPdf = F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) with V(V, L) = G(V, L) / (4 * (N.L) * (N.V))
|
|
// Remind (L.H) == (V.H)
|
|
// F is apply outside the function
|
|
|
|
float Vis = V_SmithJointGGX(NdotL, NdotV, roughness);
|
|
weightOverPdf = 4.0 * Vis * NdotL * VdotH / NdotH;
|
|
}
|
|
|
|
// weightOverPdf return the weight (without the Fresnel term) over pdf. Fresnel term must be apply by the caller.
|
|
void ImportanceSampleAnisoGGX(float2 u,
|
|
float3 V,
|
|
float3x3 localToWorld,
|
|
float roughnessT,
|
|
float roughnessB,
|
|
float NdotV,
|
|
out float3 L,
|
|
out float VdotH,
|
|
out float NdotL,
|
|
out float weightOverPdf)
|
|
{
|
|
float3 tangentX = localToWorld[0];
|
|
float3 tangentY = localToWorld[1];
|
|
float3 N = localToWorld[2];
|
|
|
|
float3 H;
|
|
SampleAnisoGGXDir(u, V, N, tangentX, tangentY, roughnessT, roughnessB, H, L);
|
|
|
|
float NdotH = saturate(dot(N, H));
|
|
// Note: since L and V are symmetric around H, LdotH == VdotH
|
|
VdotH = saturate(dot(V, H));
|
|
NdotL = saturate(dot(N, L));
|
|
|
|
// Importance sampling weight for each sample
|
|
// pdf = D(H) * (N.H) / (4 * (L.H))
|
|
// weight = fr * (N.L) with fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V))
|
|
// weight over pdf is:
|
|
// weightOverPdf = F(H) * G(V, L) * (L.H) / ((N.H) * (N.V))
|
|
// weightOverPdf = F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) with V(V, L) = G(V, L) / (4 * (N.L) * (N.V))
|
|
// Remind (L.H) == (V.H)
|
|
// F is apply outside the function
|
|
|
|
// For anisotropy we must not saturate these values
|
|
float TdotV = dot(tangentX, V);
|
|
float BdotV = dot(tangentY, V);
|
|
float TdotL = dot(tangentX, L);
|
|
float BdotL = dot(tangentY, L);
|
|
|
|
float Vis = V_SmithJointGGXAniso(TdotV, BdotV, NdotV, TdotL, BdotL, NdotL, roughnessT, roughnessB);
|
|
weightOverPdf = 4.0 * Vis * NdotL * VdotH / NdotH;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Pre-integration
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Ref: Listing 18 in "Moving Frostbite to PBR" + https://knarkowicz.wordpress.com/2014/12/27/analytical-dfg-term-for-ibl/
|
|
float4 IntegrateGGXAndDisneyFGD(float3 V, float3 N, float roughness, uint sampleCount = 4096)
|
|
{
|
|
float NdotV = saturate(dot(N, V));
|
|
float4 acc = float4(0.0, 0.0, 0.0, 0.0);
|
|
// Add some jittering on Hammersley2d
|
|
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
|
|
|
|
float3x3 localToWorld = GetLocalFrame(N);
|
|
|
|
for (uint i = 0; i < sampleCount; ++i)
|
|
{
|
|
float2 u = frac(randNum + Hammersley2d(i, sampleCount));
|
|
|
|
float VdotH;
|
|
float NdotL;
|
|
float weightOverPdf;
|
|
|
|
float3 L; // Unused
|
|
ImportanceSampleGGX(u, V, localToWorld, roughness, NdotV,
|
|
L, VdotH, NdotL, weightOverPdf);
|
|
|
|
if (NdotL > 0.0)
|
|
{
|
|
// Integral is
|
|
// 1 / NumSample * \int[ L * fr * (N.L) / pdf ] with pdf = D(H) * (N.H) / (4 * (L.H)) and fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V))
|
|
// This is split in two part:
|
|
// A) \int[ L * (N.L) ]
|
|
// B) \int[ F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) ] with V(V, L) = G(V, L) / (4 * (N.L) * (N.V))
|
|
// = \int[ F(H) * weightOverPdf ]
|
|
|
|
// Recombine at runtime with: ( f0 * weightOverPdf * (1 - Fc) + f90 * weightOverPdf * Fc ) with Fc =(1 - V.H)^5
|
|
float Fc = pow(1.0 - VdotH, 5.0);
|
|
acc.x += (1.0 - Fc) * weightOverPdf;
|
|
acc.y += Fc * weightOverPdf;
|
|
}
|
|
|
|
// for Disney we still use a Cosine importance sampling, true Disney importance sampling imply a look up table
|
|
ImportanceSampleLambert(u, localToWorld, L, NdotL, weightOverPdf);
|
|
|
|
if (NdotL > 0.0)
|
|
{
|
|
float3 H = normalize(L + V);
|
|
float LdotH = dot(L, H);
|
|
float disneyDiffuse = DisneyDiffuseNoPI(NdotV, NdotL, LdotH, RoughnessToPerceptualRoughness(roughness));
|
|
|
|
acc.z += disneyDiffuse * weightOverPdf;
|
|
}
|
|
}
|
|
|
|
return acc / sampleCount;
|
|
}
|
|
|
|
uint GetIBLRuntimeFilterSampleCount(uint mipLevel)
|
|
{
|
|
uint sampleCount = 0;
|
|
|
|
switch (mipLevel)
|
|
{
|
|
case 1: sampleCount = 21; break;
|
|
case 2: sampleCount = 34; break;
|
|
#ifdef SHADER_API_MOBILE
|
|
case 3: sampleCount = 34; break;
|
|
case 4: sampleCount = 34; break;
|
|
case 5: sampleCount = 34; break;
|
|
case 6: sampleCount = 34; break; // UNITY_SPECCUBE_LOD_STEPS
|
|
#else
|
|
case 3: sampleCount = 55; break;
|
|
case 4: sampleCount = 89; break;
|
|
case 5: sampleCount = 89; break;
|
|
case 6: sampleCount = 89; break; // UNITY_SPECCUBE_LOD_STEPS
|
|
#endif
|
|
}
|
|
|
|
return sampleCount;
|
|
}
|
|
|
|
// Ref: Listing 19 in "Moving Frostbite to PBR"
|
|
float4 IntegrateLD(TEXTURECUBE_ARGS(tex, sampl),
|
|
TEXTURE2D(ggxIblSamples),
|
|
float3 V,
|
|
float3 N,
|
|
float roughness,
|
|
float index, // Current MIP level minus one
|
|
float invOmegaP,
|
|
uint sampleCount, // Must be a Fibonacci number
|
|
bool prefilter,
|
|
bool usePrecomputedSamples)
|
|
{
|
|
float3x3 localToWorld = GetLocalFrame(N);
|
|
|
|
#ifndef USE_KARIS_APPROXIMATION
|
|
float NdotV = 1; // N == V
|
|
float preLambdaV = GetSmithJointGGXPreLambdaV(NdotV, roughness);
|
|
#endif
|
|
|
|
float3 lightInt = float3(0.0, 0.0, 0.0);
|
|
float cbsdfInt = 0.0;
|
|
|
|
for (uint i = 0; i < sampleCount; ++i)
|
|
{
|
|
float3 L;
|
|
float NdotL, NdotH, LdotH;
|
|
|
|
if (usePrecomputedSamples)
|
|
{
|
|
float3 localL = LOAD_TEXTURE2D(ggxIblSamples, uint2(i, index)).xyz;
|
|
|
|
L = mul(localL, localToWorld);
|
|
NdotL = localL.z;
|
|
LdotH = sqrt(0.5 + 0.5 * NdotL);
|
|
}
|
|
else
|
|
{
|
|
float2 u = Fibonacci2d(i, sampleCount);
|
|
|
|
// Note: if (N == V), all of the microsurface normals are visible.
|
|
SampleGGXDir(u, V, localToWorld, roughness, L, NdotL, NdotH, LdotH, true);
|
|
|
|
if (NdotL <= 0) continue; // Note that some samples will have 0 contribution
|
|
}
|
|
|
|
float mipLevel;
|
|
|
|
if (!prefilter) // BRDF importance sampling
|
|
{
|
|
mipLevel = 0;
|
|
}
|
|
else // Prefiltered BRDF importance sampling
|
|
{
|
|
// Use lower MIP-map levels for fetching samples with low probabilities
|
|
// in order to reduce the variance.
|
|
// Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
|
|
//
|
|
// - OmegaS: Solid angle associated with the sample
|
|
// - OmegaP: Solid angle associated with the texel of the cubemap
|
|
|
|
float omegaS;
|
|
|
|
if (usePrecomputedSamples)
|
|
{
|
|
omegaS = LOAD_TEXTURE2D(ggxIblSamples, uint2(i, index)).w;
|
|
}
|
|
else
|
|
{
|
|
// float PDF = D * NdotH * Jacobian, where Jacobian = 1 / (4 * LdotH).
|
|
// Since (N == V), NdotH == LdotH.
|
|
float pdf = 0.25 * D_GGX(NdotH, roughness);
|
|
// TODO: improve the accuracy of the sample's solid angle fit for GGX.
|
|
omegaS = rcp(sampleCount) * rcp(pdf);
|
|
}
|
|
|
|
// 'invOmegaP' is precomputed on CPU and provided as a parameter to the function.
|
|
// float omegaP = FOUR_PI / (6.0 * cubemapWidth * cubemapWidth);
|
|
const float mipBias = roughness;
|
|
mipLevel = 0.5 * log2(omegaS * invOmegaP) + mipBias;
|
|
}
|
|
|
|
// TODO: use a Gaussian-like filter to generate the MIP pyramid.
|
|
float3 val = SAMPLE_TEXTURECUBE_LOD(tex, sampl, L, mipLevel).rgb;
|
|
|
|
// The goal of this function is to use Monte-Carlo integration to find
|
|
// X = Integral{Radiance(L) * CBSDF(L, N, V) dL} / Integral{CBSDF(L, N, V) dL}.
|
|
// Note: Integral{CBSDF(L, N, V) dL} is given by the FDG texture.
|
|
// CBSDF = F * D * G * NdotL / (4 * NdotL * NdotV) = F * D * G / (4 * NdotV).
|
|
// PDF = D * NdotH / (4 * LdotH).
|
|
// Weight = CBSDF / PDF = F * G * LdotH / (NdotV * NdotH).
|
|
// Since we perform filtering with the assumption that (V == N),
|
|
// (LdotH == NdotH) && (NdotV == 1) && (Weight == F * G).
|
|
// Therefore, after the Monte Carlo expansion of the integrals,
|
|
// X = Sum(Radiance(L) * Weight) / Sum(Weight) = Sum(Radiance(L) * F * G) / Sum(F * G).
|
|
|
|
#ifndef USE_KARIS_APPROXIMATION
|
|
// The choice of the Fresnel factor does not appear to affect the result.
|
|
float F = 1; // F_Schlick(F0, LdotH);
|
|
float V = V_SmithJointGGX(NdotL, NdotV, roughness, preLambdaV);
|
|
float G = V * NdotL * NdotV; // 4 cancels out
|
|
|
|
lightInt += F * G * val;
|
|
cbsdfInt += F * G;
|
|
#else
|
|
// Use the approximation from "Real Shading in Unreal Engine 4": Weight ≈ NdotL.
|
|
lightInt += NdotL * val;
|
|
cbsdfInt += NdotL;
|
|
#endif
|
|
}
|
|
|
|
return float4(lightInt / cbsdfInt, 1.0);
|
|
}
|
|
|
|
// Searches the row 'j' containing 'n' elements of 'haystack' and
|
|
// returns the index of the first element greater or equal to 'needle'.
|
|
uint BinarySearchRow(uint j, float needle, TEXTURE2D(haystack), uint n)
|
|
{
|
|
uint i = n - 1;
|
|
float v = LOAD_TEXTURE2D(haystack, uint2(i, j)).r;
|
|
|
|
if (needle < v)
|
|
{
|
|
i = 0;
|
|
|
|
for (uint b = 1 << firstbithigh(n - 1); b != 0; b >>= 1)
|
|
{
|
|
uint p = i | b;
|
|
v = LOAD_TEXTURE2D(haystack, uint2(p, j)).r;
|
|
if (v <= needle) { i = p; } // Move to the right.
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
float4 IntegrateLD_MIS(TEXTURECUBE_ARGS(envMap, sampler_envMap),
|
|
TEXTURE2D(marginalRowDensities),
|
|
TEXTURE2D(conditionalDensities),
|
|
float3 V,
|
|
float3 N,
|
|
float roughness,
|
|
float invOmegaP,
|
|
uint width,
|
|
uint height,
|
|
uint sampleCount,
|
|
bool prefilter)
|
|
{
|
|
float3x3 localToWorld = GetLocalFrame(N);
|
|
|
|
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
|
|
|
|
float3 lightInt = float3(0.0, 0.0, 0.0);
|
|
float cbsdfInt = 0.0;
|
|
|
|
/*
|
|
// Dedicate 50% of samples to light sampling at 1.0 roughness.
|
|
// Only perform BSDF sampling when roughness is below 0.5.
|
|
const int lightSampleCount = lerp(0, sampleCount / 2, saturate(2.0 * roughness - 1.0));
|
|
const int bsdfSampleCount = sampleCount - lightSampleCount;
|
|
*/
|
|
|
|
// The value of the integral of intensity values of the environment map (as a 2D step function).
|
|
float envMapInt2dStep = LOAD_TEXTURE2D(marginalRowDensities, uint2(height, 0)).r;
|
|
// Since we are using equiareal mapping, we need to divide by the area of the sphere.
|
|
float envMapIntSphere = envMapInt2dStep * INV_FOUR_PI;
|
|
|
|
// Perform light importance sampling.
|
|
for (uint i = 0; i < sampleCount; i++)
|
|
{
|
|
float2 s = frac(randNum + Hammersley2d(i, sampleCount));
|
|
|
|
// Sample a row from the marginal distribution.
|
|
uint y = BinarySearchRow(0, s.x, marginalRowDensities, height - 1);
|
|
|
|
// Sample a column from the conditional distribution.
|
|
uint x = BinarySearchRow(y, s.y, conditionalDensities, width - 1);
|
|
|
|
// Compute the coordinates of the sample.
|
|
// Note: we take the sample in between two texels, and also apply the half-texel offset.
|
|
// We could compute fractional coordinates at the cost of 4 extra texel samples.
|
|
float u = saturate((float)x / width + 1.0 / width);
|
|
float v = saturate((float)y / height + 1.0 / height);
|
|
float3 L = ConvertEquiarealToCubemap(u, v);
|
|
|
|
float NdotL = saturate(dot(N, L));
|
|
|
|
if (NdotL > 0.0)
|
|
{
|
|
float3 val = SAMPLE_TEXTURECUBE_LOD(envMap, sampler_envMap, L, 0).rgb;
|
|
float pdf = (val.r + val.g + val.b) / envMapIntSphere;
|
|
|
|
if (pdf > 0.0)
|
|
{
|
|
// (N == V) && (acos(VdotL) == 2 * acos(NdotH)).
|
|
float NdotH = sqrt(NdotL * 0.5 + 0.5);
|
|
|
|
// *********************************************************************************
|
|
// Our goal is to use Monte-Carlo integration with importance sampling to evaluate
|
|
// X(V) = Integral{Radiance(L) * CBSDF(L, N, V) dL} / Integral{CBSDF(L, N, V) dL}.
|
|
// CBSDF = F * D * G * NdotL / (4 * NdotL * NdotV) = F * D * G / (4 * NdotV).
|
|
// Weight = CBSDF / PDF.
|
|
// We use two approximations of Brian Karis from "Real Shading in Unreal Engine 4":
|
|
// (F * G ≈ NdotL) && (NdotV == 1).
|
|
// Weight = D * NdotL / (4 * PDF).
|
|
// *********************************************************************************
|
|
|
|
float weight = D_GGX(NdotH, roughness) * NdotL / (4.0 * pdf);
|
|
|
|
lightInt += weight * val;
|
|
cbsdfInt += weight;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prevent NaNs arising from the division of 0 by 0.
|
|
cbsdfInt = max(cbsdfInt, FLT_MIN);
|
|
|
|
return float4(lightInt / cbsdfInt, 1.0);
|
|
}
|
|
|
|
#endif // UNITY_IMAGE_BASED_LIGHTING_INCLUDED
|