您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

185 行
8.7 KiB

#ifndef UNITY_VBUFFER_INCLUDED
#define UNITY_VBUFFER_INCLUDED
// Interpolation in the log space is non-linear.
// Therefore, given 'logEncodedDepth', we compute a new depth value
// which allows us to perform HW interpolation which is linear in the view space.
float ComputeLerpPositionForLogEncoding(float linearDepth,
float logEncodedDepth,
float2 VBufferSliceCount,
float4 VBufferDepthDecodingParams)
{
float z = linearDepth;
float d = logEncodedDepth;
float numSlices = VBufferSliceCount.x;
float rcpNumSlices = VBufferSliceCount.y;
float s = d * numSlices - 0.5;
float s0 = floor(s);
float s1 = ceil(s);
float d0 = saturate(s0 * rcpNumSlices + (0.5 * rcpNumSlices));
float d1 = saturate(s1 * rcpNumSlices + (0.5 * rcpNumSlices));
float z0 = DecodeLogarithmicDepthGeneralized(d0, VBufferDepthDecodingParams);
float z1 = DecodeLogarithmicDepthGeneralized(d1, VBufferDepthDecodingParams);
// Compute the linear interpolation weight.
float t = saturate((z - z0) / (z1 - z0));
// Do not saturate here, we want to know whether we are outside of the near/far plane bounds.
return d0 + t * rcpNumSlices;
}
// if (correctLinearInterpolation), we use ComputeLerpPositionForLogEncoding() to correct weighting
// of both slices at the cost of extra ALUs.
//
// if (quadraticFilterXY), we perform biquadratic (3x3) reconstruction for each slice to reduce
// aliasing at the cost of extra ALUs and bandwidth.
// Warning: you MUST pass a linear sampler in order for the quadratic filter to work.
//
// Note: for correct filtering, the data has to be stored in the perceptual space.
// This means storing tone mapped radiance and transmittance instead of optical depth.
// See "A Fresh Look at Generalized Sampling", p. 51.
//
// if (clampToBorder), samples outside of the buffer return 0 (we perform a smooth fade).
// Otherwise, the sampler simply clamps the texture coordinate to the edge of the texture.
// Warning: clamping to border may not work as expected with the quadratic filter due to its extent.
float4 SampleVBuffer(TEXTURE3D_ARGS(VBuffer, clampSampler),
float2 positionNDC,
float linearDepth,
float2 viewportScale,
float4 VBufferResolution,
float2 VBufferSliceCount,
float4 VBufferDepthEncodingParams,
float4 VBufferDepthDecodingParams,
bool correctLinearInterpolation,
bool quadraticFilterXY,
bool clampToBorder)
{
float2 uv = positionNDC;
float w;
// The distance between slices is log-encoded.
float z = linearDepth;
float d = EncodeLogarithmicDepthGeneralized(z, VBufferDepthEncodingParams);
if (correctLinearInterpolation)
{
// Adjust the texture coordinate for HW linear filtering.
w = ComputeLerpPositionForLogEncoding(z, d, VBufferSliceCount, VBufferDepthDecodingParams);
}
else
{
// Ignore non-linearity (for performance reasons) at the cost of accuracy.
// The results are exact for a stationary camera, but can potentially cause some judder in motion.
w = d;
}
// Always clamp UVs (clamp to edge) to avoid leaks due to suballocation and memory aliasing.
// clamp to (vp_dim - 0.5) / tex_dim = vp_scale - (0.5 / tex_dim) = vp_scale - 0.5 * vp_scale / tex_dim.
// Do not clamp along the W direction for now, it's not necessary (our slice count is fixed).
// Warning: there will still be some leaks as long as the viewport, screen or texture size
// are not multiples of the V-Buffer tile size (8 or 4 pixels). We ignore them for now since
// it's not a problem in for a real game.
// TODO: precompute this in a uniform...
float2 maxUV = viewportScale * (1 - 0.5 * VBufferResolution.zw);
float fadeWeight = 1;
if (clampToBorder)
{
// Compute the distance to the edge, and remap it to the [0, 1] range.
// Smoothly fade from the center of the edge texel to the black border color.
float weightU = saturate((1 - 2 * abs(uv.x - 0.5)) * VBufferResolution.x);
float weightV = saturate((1 - 2 * abs(uv.y - 0.5)) * VBufferResolution.y);
float weightW = saturate((1 - 2 * abs(w - 0.5)) * VBufferSliceCount.x);
fadeWeight = weightU * weightV * weightW;
}
float4 result = 0;
if (fadeWeight > 0)
{
if (quadraticFilterXY)
{
float2 xy = uv * VBufferResolution.xy;
float2 ic = floor(xy);
float2 fc = frac(xy);
float2 weights[2], offsets[2];
BiquadraticFilter(1 - fc, weights, offsets); // Inverse-translate the filter centered around 0.5
// Apply the viewport scale right at the end.
// TODO: precompute (VBufferResolution.zw * viewportScale).
result = (weights[0].x * weights[0].y) * SAMPLE_TEXTURE3D_LOD(VBuffer, clampSampler, float3(min((ic + float2(offsets[0].x, offsets[0].y)) * (VBufferResolution.zw * viewportScale), maxUV), w), 0) // Top left
+ (weights[1].x * weights[0].y) * SAMPLE_TEXTURE3D_LOD(VBuffer, clampSampler, float3(min((ic + float2(offsets[1].x, offsets[0].y)) * (VBufferResolution.zw * viewportScale), maxUV), w), 0) // Top right
+ (weights[0].x * weights[1].y) * SAMPLE_TEXTURE3D_LOD(VBuffer, clampSampler, float3(min((ic + float2(offsets[0].x, offsets[1].y)) * (VBufferResolution.zw * viewportScale), maxUV), w), 0) // Bottom left
+ (weights[1].x * weights[1].y) * SAMPLE_TEXTURE3D_LOD(VBuffer, clampSampler, float3(min((ic + float2(offsets[1].x, offsets[1].y)) * (VBufferResolution.zw * viewportScale), maxUV), w), 0); // Bottom right
}
else
{
// Apply the viewport scale right at the end.
result = SAMPLE_TEXTURE3D_LOD(VBuffer, clampSampler, float3(min(uv * viewportScale, maxUV), w), 0);
}
result *= fadeWeight;
}
return result;
}
float4 SampleVBuffer(TEXTURE3D_ARGS(VBuffer, clampSampler),
float3 positionWS,
float4x4 viewProjMatrix,
float2 viewportScale,
float4 VBufferResolution,
float2 VBufferSliceCount,
float4 VBufferDepthEncodingParams,
float4 VBufferDepthDecodingParams,
bool correctLinearInterpolation,
bool quadraticFilterXY,
bool clampToBorder)
{
float2 positionNDC = ComputeNormalizedDeviceCoordinates(positionWS, viewProjMatrix);
float linearDepth = mul(viewProjMatrix, float4(positionWS, 1)).w;
return SampleVBuffer(TEXTURE3D_PARAM(VBuffer, clampSampler),
positionNDC,
linearDepth,
viewportScale,
VBufferResolution,
VBufferSliceCount,
VBufferDepthEncodingParams,
VBufferDepthDecodingParams,
correctLinearInterpolation,
quadraticFilterXY,
clampToBorder);
}
// Returns interpolated {volumetric radiance, transmittance}.
float4 SampleVolumetricLighting(TEXTURE3D_ARGS(VBufferLighting, clampSampler),
float2 positionNDC,
float linearDepth,
float4 VBufferResolution,
float2 VBufferSliceCount,
float4 VBufferDepthEncodingParams,
float4 VBufferDepthDecodingParams,
bool correctLinearInterpolation,
bool quadraticFilterXY)
{
// TODO: add some slowly animated noise to the reconstructed value.
return FastTonemapInvert(SampleVBuffer(TEXTURE3D_PARAM(VBufferLighting, clampSampler),
positionNDC,
linearDepth,
GetViewportScaleCurrentFrame(),
VBufferResolution,
VBufferSliceCount,
VBufferDepthEncodingParams,
VBufferDepthDecodingParams,
correctLinearInterpolation,
quadraticFilterXY,
false));
}
#endif // UNITY_VBUFFER_INCLUDED