您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
182 行
7.0 KiB
182 行
7.0 KiB
#ifndef UNITY_COMMON_MATERIAL_INCLUDED
|
|
#define UNITY_COMMON_MATERIAL_INCLUDED
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Helper function for anisotropy
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void ConvertAnisotropyToRoughness(float roughness, float anisotropy, out float roughnessT, out float roughnessB)
|
|
{
|
|
// Use the parametrization of Sony Imageworks.
|
|
// Ref: Revisiting Physically Based Shading at Imageworks, p. 15.
|
|
roughnessT = roughness * (1 + anisotropy);
|
|
roughnessB = roughness * (1 - anisotropy);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Helper function for perceptual roughness
|
|
//-----------------------------------------------------------------------------
|
|
|
|
float PerceptualRoughnessToRoughness(float perceptualRoughness)
|
|
{
|
|
return perceptualRoughness * perceptualRoughness;
|
|
}
|
|
|
|
float RoughnessToPerceptualRoughness(float roughness)
|
|
{
|
|
return sqrt(roughness);
|
|
}
|
|
|
|
float PerceptualSmoothnessToRoughness(float perceptualSmoothness)
|
|
{
|
|
return (1.0 - perceptualSmoothness) * (1.0 - perceptualSmoothness);
|
|
}
|
|
|
|
float PerceptualSmoothnessToPerceptualRoughness(float perceptualSmoothness)
|
|
{
|
|
return (1.0 - perceptualSmoothness);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Parallax mapping
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// ref https://www.gamedev.net/topic/678043-how-to-blend-world-space-normals/#entry5287707
|
|
// assume compositing in world space
|
|
// Note: Using vtxNormal = float3(0, 0, 1) give the BlendNormalRNM formulation.
|
|
// TODO: Untested
|
|
float3 BlendNormalWorldspaceRNM(float3 n1, float3 n2, float3 vtxNormal)
|
|
{
|
|
// Build the shortest-arc quaternion
|
|
float4 q = float4(cross(vtxNormal, n2), dot(vtxNormal, n2) + 1.0) / sqrt(2.0 * (dot(vtxNormal, n2) + 1));
|
|
|
|
// Rotate the normal
|
|
return n1 * (q.w * q.w - dot(q.xyz, q.xyz)) + 2 * q.xyz * dot(q.xyz, n1) + 2 * q.w * cross(q.xyz, n1);
|
|
}
|
|
|
|
// ref http://blog.selfshadow.com/publications/blending-in-detail/
|
|
// ref https://gist.github.com/selfshadow/8048308
|
|
// Reoriented Normal Mapping
|
|
// Blending when n1 and n2 are already 'unpacked' and normalised
|
|
// assume compositing in tangent space
|
|
float3 BlendNormalRNM(float3 n1, float3 n2)
|
|
{
|
|
float3 t = n1.xyz + float3(0.0, 0.0, 1.0);
|
|
float3 u = n2.xyz * float3(-1.0, -1.0, 1.0);
|
|
float3 r = (t / t.z) * dot(t, u) - u;
|
|
return r;
|
|
}
|
|
|
|
// assume compositing in tangent space
|
|
float3 BlendNormal(float3 n1, float3 n2)
|
|
{
|
|
return normalize(float3(n1.xy * n2.z + n2.xy * n1.z, n1.z * n2.z));
|
|
}
|
|
|
|
// Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch01.html / http://www.slideshare.net/icastano/cascades-demo-secrets
|
|
float3 ComputeTriplanarWeights(float3 normal)
|
|
{
|
|
// Determine the blend weights for the 3 planar projections.
|
|
float3 blendWeights = abs(normal);
|
|
// Tighten up the blending zone
|
|
blendWeights = (blendWeights - 0.2) * 7.0;
|
|
blendWeights = blendWeights * blendWeights * blendWeights; // pow(blendWeights, 3);
|
|
// Force weights to sum to 1.0 (very important!)
|
|
blendWeights = max(blendWeights, float3(0.0, 0.0, 0.0));
|
|
blendWeights /= dot(blendWeights, 1.0);
|
|
|
|
return blendWeights;
|
|
}
|
|
|
|
// Planar/Triplanar convention for Unity in world space
|
|
void GetTriplanarCoordinate(float3 position, out float2 uvXZ, out float2 uvXY, out float2 uvZY)
|
|
{
|
|
// Caution: This must follow the same rule as what is use for SurfaceGradient triplanar
|
|
// TODO: Currently the normal mapping looks wrong without SURFACE_GRADIENT option because we don't handle corretly the tangent space
|
|
uvXZ = float2(position.z, position.x);
|
|
uvXY = float2(position.x, position.y);
|
|
uvZY = float2(position.z, position.y);
|
|
}
|
|
|
|
float LerpWhiteTo(float b, float t)
|
|
{
|
|
float oneMinusT = 1.0 - t;
|
|
return oneMinusT + b * t;
|
|
}
|
|
|
|
float3 LerpWhiteTo(float3 b, float t)
|
|
{
|
|
float oneMinusT = 1.0 - t;
|
|
return float3(oneMinusT, oneMinusT, oneMinusT) + b * t;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// SSS/Transmittance
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Computes the fraction of light passing through the object.
|
|
// Evaluate Int{0, inf}{2 * Pi * r * R(sqrt(r^2 + d^2))}, where R is the diffusion profile.
|
|
// Note: 'volumeAlbedo' should be premultiplied by 0.25.
|
|
// Ref: Approximate Reflectance Profiles for Efficient Subsurface Scattering by Pixar (BSSRDF only).
|
|
float3 ComputeTransmittanceDisney(float3 S, float3 volumeAlbedo, float thickness, float radiusScale)
|
|
{
|
|
// Thickness and SSS radius are decoupled for artists.
|
|
// In theory, we should modify the thickness by the inverse of the radius scale of the profile.
|
|
// thickness /= radiusScale;
|
|
|
|
#if 0
|
|
float3 expOneThird = exp(((-1.0 / 3.0) * thickness) * S);
|
|
#else
|
|
// Help the compiler.
|
|
float k = (-1.0 / 3.0) * LOG2_E;
|
|
float3 p = (k * thickness) * S;
|
|
float3 expOneThird = exp2(p);
|
|
#endif
|
|
|
|
// Premultiply & optimize: T = (1/4 * A) * (e^(-t * S) + 3 * e^(-1/3 * t * S))
|
|
return volumeAlbedo * (expOneThird * expOneThird * expOneThird + 3 * expOneThird);
|
|
}
|
|
|
|
// Evaluates transmittance for a linear combination of two normalized 2D Gaussians.
|
|
// Ref: Real-Time Realistic Skin Translucency (2010), equation 9 (modified).
|
|
// Note: 'volumeAlbedo' should be premultiplied by 0.25, correspondingly 'lerpWeight' by 4,
|
|
// and 'halfRcpVariance1' should be prescaled by (0.1 * SssConstants.SSS_BASIC_DISTANCE_SCALE)^2.
|
|
float3 ComputeTransmittanceJimenez(float3 halfRcpVariance1, float lerpWeight1,
|
|
float3 halfRcpVariance2, float lerpWeight2,
|
|
float3 volumeAlbedo, float thickness, float radiusScale)
|
|
{
|
|
// Thickness and SSS radius are decoupled for artists.
|
|
// In theory, we should modify the thickness by the inverse of the radius scale of the profile.
|
|
// thickness /= radiusScale;
|
|
|
|
float t2 = thickness * thickness;
|
|
|
|
// T = A * lerp(exp(-t2 * halfRcpVariance1), exp(-t2 * halfRcpVariance2), lerpWeight2)
|
|
return volumeAlbedo * (exp(-t2 * halfRcpVariance1) * lerpWeight1 + exp(-t2 * halfRcpVariance2) * lerpWeight2);
|
|
}
|
|
|
|
// Ref: Steve McAuley - Energy-Conserving Wrapped Diffuse
|
|
float ComputeWrappedDiffuseLighting(float NdotL, float w)
|
|
{
|
|
return saturate((NdotL + w) / ((1 + w) * (1 + w)));
|
|
}
|
|
|
|
// In order to support subsurface scattering, we need to know which pixels have an SSS material.
|
|
// It can be accomplished by reading the stencil buffer.
|
|
// A faster solution (which avoids an extra texture fetch) is to simply make sure that
|
|
// all pixels which belong to an SSS material are not black (those that don't always are).
|
|
// We choose the blue color channel since it's perceptually the least noticeable.
|
|
float3 TagLightingForSSS(float3 subsurfaceLighting)
|
|
{
|
|
subsurfaceLighting.b = max(subsurfaceLighting.b, HALF_MIN);
|
|
return subsurfaceLighting;
|
|
}
|
|
|
|
// See TagLightingForSSS() for details.
|
|
bool TestLightingForSSS(float3 subsurfaceLighting)
|
|
{
|
|
return subsurfaceLighting.b > 0;
|
|
}
|
|
|
|
|
|
#endif // UNITY_COMMON_MATERIAL_INCLUDED
|