您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
1500 行
72 KiB
1500 行
72 KiB
using UnityEngine.Rendering;
|
|
using UnityEngine.Experimental.Rendering;
|
|
using System;
|
|
using System.Collections.Generic;
|
|
|
|
namespace UnityEngine.Experimental.ScriptableRenderLoop
|
|
{
|
|
[ExecuteInEditMode]
|
|
public class FptlLighting : RenderPipeline
|
|
{
|
|
#if UNITY_EDITOR
|
|
[UnityEditor.MenuItem("Renderloop/CreateRenderLoopFPTL")]
|
|
static void CreateRenderLoopFPTL()
|
|
{
|
|
var instance = ScriptableObject.CreateInstance<FptlLighting>();
|
|
UnityEditor.AssetDatabase.CreateAsset(instance, "Assets/renderloopfptl.asset");
|
|
//AssetDatabase.CreateAsset(instance, "Assets/ScriptableRenderLoop/fptl/renderloopfptl.asset");
|
|
}
|
|
|
|
#endif
|
|
|
|
[SerializeField]
|
|
ShadowSettings m_ShadowSettings = ShadowSettings.Default;
|
|
ShadowRenderPass m_ShadowPass;
|
|
|
|
[SerializeField]
|
|
TextureSettings m_TextureSettings = TextureSettings.Default;
|
|
|
|
public Shader deferredShader;
|
|
public Shader deferredReflectionShader;
|
|
public ComputeShader deferredComputeShader;
|
|
public Shader finalPassShader;
|
|
public Shader debugLightBoundsShader;
|
|
|
|
public ComputeShader buildScreenAABBShader;
|
|
public ComputeShader buildPerTileLightListShader; // FPTL
|
|
public ComputeShader buildPerBigTileLightListShader;
|
|
|
|
public ComputeShader buildPerVoxelLightListShader; // clustered
|
|
|
|
private Material m_DeferredMaterial;
|
|
private Material m_DeferredReflectionMaterial;
|
|
private static int s_GBufferAlbedo;
|
|
private static int s_GBufferSpecRough;
|
|
private static int s_GBufferNormal;
|
|
private static int s_GBufferEmission;
|
|
private static int s_GBufferZ;
|
|
private static int s_CameraTarget;
|
|
private static int s_CameraDepthTexture;
|
|
|
|
private static int s_GenAABBKernel;
|
|
private static int s_GenListPerTileKernel;
|
|
private static int s_GenListPerVoxelKernel;
|
|
private static int s_ClearVoxelAtomicKernel;
|
|
private static ComputeBuffer s_LightDataBuffer;
|
|
private static ComputeBuffer s_ConvexBoundsBuffer;
|
|
private static ComputeBuffer s_AABBBoundsBuffer;
|
|
private static ComputeBuffer s_LightList;
|
|
private static ComputeBuffer s_DirLightList;
|
|
|
|
private static ComputeBuffer s_BigTileLightList; // used for pre-pass coarse culling on 64x64 tiles
|
|
private static int s_GenListPerBigTileKernel;
|
|
|
|
// clustered light list specific buffers and data begin
|
|
public bool enableClustered = false;
|
|
public bool disableFptlWhenClustered = false; // still useful on opaques
|
|
public bool enableBigTilePrepass = true;
|
|
public bool enableDrawLightBoundsDebug = false;
|
|
public bool enableDrawTileDebug = false;
|
|
public bool enableReflectionProbeDebug = false;
|
|
public bool enableComputeLightEvaluation = false;
|
|
const bool k_UseDepthBuffer = true;// // only has an impact when EnableClustered is true (requires a depth-prepass)
|
|
const bool k_UseAsyncCompute = true; // should not use on mobile
|
|
|
|
const int k_Log2NumClusters = 6; // accepted range is from 0 to 6. NumClusters is 1<<g_iLog2NumClusters
|
|
const float k_ClustLogBase = 1.02f; // each slice 2% bigger than the previous
|
|
float m_ClustScale;
|
|
private static ComputeBuffer s_PerVoxelLightLists;
|
|
private static ComputeBuffer s_PerVoxelOffset;
|
|
private static ComputeBuffer s_PerTileLogBaseTweak;
|
|
private static ComputeBuffer s_GlobalLightListAtomic;
|
|
// clustered light list specific buffers and data end
|
|
|
|
private static int s_WidthOnRecord;
|
|
private static int s_HeightOnRecord;
|
|
|
|
Matrix4x4[] m_MatWorldToShadow = new Matrix4x4[k_MaxLights * k_MaxShadowmapPerLights];
|
|
Vector4[] m_DirShadowSplitSpheres = new Vector4[k_MaxDirectionalSplit];
|
|
Vector4[] m_Shadow3X3PCFTerms = new Vector4[4];
|
|
|
|
public const int MaxNumLights = 1024;
|
|
public const int MaxNumDirLights = 2;
|
|
public const float FltMax = 3.402823466e+38F;
|
|
|
|
const int k_MaxLights = 10;
|
|
const int k_MaxShadowmapPerLights = 6;
|
|
const int k_MaxDirectionalSplit = 4;
|
|
// Directional lights become spotlights at a far distance. This is the distance we pull back to set the spotlight origin.
|
|
const float k_DirectionalLightPullbackDistance = 10000.0f;
|
|
|
|
[NonSerialized]
|
|
private int m_WarnedTooManyLights = 0;
|
|
|
|
private TextureCache2D m_CookieTexArray;
|
|
private TextureCacheCubemap m_CubeCookieTexArray;
|
|
private TextureCacheCubemap m_CubeReflTexArray;
|
|
|
|
private SkyboxHelper m_SkyboxHelper;
|
|
|
|
private Material m_BlitMaterial;
|
|
private Material m_DebugLightBoundsMaterial;
|
|
|
|
private Texture2D m_NHxRoughnessTexture;
|
|
private Texture2D m_LightAttentuationTexture;
|
|
private int m_shadowBufferID;
|
|
|
|
public override void Cleanup()
|
|
{
|
|
if (m_DeferredMaterial) DestroyImmediate(m_DeferredMaterial);
|
|
if (m_DeferredReflectionMaterial) DestroyImmediate(m_DeferredReflectionMaterial);
|
|
if (m_BlitMaterial) DestroyImmediate(m_BlitMaterial);
|
|
if (m_DebugLightBoundsMaterial) DestroyImmediate(m_DebugLightBoundsMaterial);
|
|
if (m_NHxRoughnessTexture) DestroyImmediate(m_NHxRoughnessTexture);
|
|
if (m_LightAttentuationTexture) DestroyImmediate(m_LightAttentuationTexture);
|
|
|
|
m_CookieTexArray.Release();
|
|
m_CubeCookieTexArray.Release();
|
|
m_CubeReflTexArray.Release();
|
|
|
|
s_AABBBoundsBuffer.Release();
|
|
s_ConvexBoundsBuffer.Release();
|
|
s_LightDataBuffer.Release();
|
|
ReleaseResolutionDependentBuffers();
|
|
s_DirLightList.Release();
|
|
|
|
if (enableClustered)
|
|
{
|
|
if (s_GlobalLightListAtomic != null)
|
|
s_GlobalLightListAtomic.Release();
|
|
}
|
|
|
|
ClearComputeBuffers();
|
|
}
|
|
|
|
void ClearComputeBuffers()
|
|
{
|
|
if (s_AABBBoundsBuffer != null)
|
|
s_AABBBoundsBuffer.Release();
|
|
|
|
if (s_ConvexBoundsBuffer != null)
|
|
s_ConvexBoundsBuffer.Release();
|
|
|
|
if (s_LightDataBuffer != null)
|
|
s_LightDataBuffer.Release();
|
|
|
|
ReleaseResolutionDependentBuffers();
|
|
|
|
if (s_DirLightList != null)
|
|
s_DirLightList.Release();
|
|
|
|
if (enableClustered)
|
|
{
|
|
if (s_GlobalLightListAtomic != null)
|
|
s_GlobalLightListAtomic.Release();
|
|
}
|
|
}
|
|
|
|
public override void Build()
|
|
{
|
|
s_GBufferAlbedo = Shader.PropertyToID("_CameraGBufferTexture0");
|
|
s_GBufferSpecRough = Shader.PropertyToID("_CameraGBufferTexture1");
|
|
s_GBufferNormal = Shader.PropertyToID("_CameraGBufferTexture2");
|
|
s_GBufferEmission = Shader.PropertyToID("_CameraGBufferTexture3");
|
|
s_GBufferZ = Shader.PropertyToID("_CameraGBufferZ"); // used while rendering into G-buffer+
|
|
s_CameraDepthTexture = Shader.PropertyToID("_CameraDepthTexture"); // copy of that for later sampling in shaders
|
|
s_CameraTarget = Shader.PropertyToID("_CameraTarget");
|
|
|
|
m_DeferredMaterial = new Material(deferredShader);
|
|
m_DeferredReflectionMaterial = new Material(deferredReflectionShader);
|
|
m_DeferredMaterial.hideFlags = HideFlags.HideAndDontSave;
|
|
m_DeferredReflectionMaterial.hideFlags = HideFlags.HideAndDontSave;
|
|
|
|
s_GenAABBKernel = buildScreenAABBShader.FindKernel("ScreenBoundsAABB");
|
|
s_GenListPerTileKernel = buildPerTileLightListShader.FindKernel(enableBigTilePrepass ? "TileLightListGen_SrcBigTile" : "TileLightListGen");
|
|
s_AABBBoundsBuffer = new ComputeBuffer(2 * MaxNumLights, 3 * sizeof(float));
|
|
s_ConvexBoundsBuffer = new ComputeBuffer(MaxNumLights, System.Runtime.InteropServices.Marshal.SizeOf(typeof(SFiniteLightBound)));
|
|
s_LightDataBuffer = new ComputeBuffer(MaxNumLights, System.Runtime.InteropServices.Marshal.SizeOf(typeof(SFiniteLightData)));
|
|
s_DirLightList = new ComputeBuffer(MaxNumDirLights, System.Runtime.InteropServices.Marshal.SizeOf(typeof(DirectionalLight)));
|
|
|
|
buildScreenAABBShader.SetBuffer(s_GenAABBKernel, "g_data", s_ConvexBoundsBuffer);
|
|
//m_BuildScreenAABBShader.SetBuffer(kGenAABBKernel, "g_vBoundsBuffer", m_aabbBoundsBuffer);
|
|
m_DeferredMaterial.SetBuffer("g_vLightData", s_LightDataBuffer);
|
|
m_DeferredMaterial.SetBuffer("g_dirLightData", s_DirLightList);
|
|
m_DeferredReflectionMaterial.SetBuffer("g_vLightData", s_LightDataBuffer);
|
|
|
|
buildPerTileLightListShader.SetBuffer(s_GenListPerTileKernel, "g_vBoundsBuffer", s_AABBBoundsBuffer);
|
|
buildPerTileLightListShader.SetBuffer(s_GenListPerTileKernel, "g_vLightData", s_LightDataBuffer);
|
|
buildPerTileLightListShader.SetBuffer(s_GenListPerTileKernel, "g_data", s_ConvexBoundsBuffer);
|
|
|
|
if (enableClustered)
|
|
{
|
|
var kernelName = enableBigTilePrepass ? (k_UseDepthBuffer ? "TileLightListGen_DepthRT_SrcBigTile" : "TileLightListGen_NoDepthRT_SrcBigTile") : (k_UseDepthBuffer ? "TileLightListGen_DepthRT" : "TileLightListGen_NoDepthRT");
|
|
s_GenListPerVoxelKernel = buildPerVoxelLightListShader.FindKernel(kernelName);
|
|
s_ClearVoxelAtomicKernel = buildPerVoxelLightListShader.FindKernel("ClearAtomic");
|
|
buildPerVoxelLightListShader.SetBuffer(s_GenListPerVoxelKernel, "g_vBoundsBuffer", s_AABBBoundsBuffer);
|
|
buildPerVoxelLightListShader.SetBuffer(s_GenListPerVoxelKernel, "g_vLightData", s_LightDataBuffer);
|
|
buildPerVoxelLightListShader.SetBuffer(s_GenListPerVoxelKernel, "g_data", s_ConvexBoundsBuffer);
|
|
|
|
s_GlobalLightListAtomic = new ComputeBuffer(1, sizeof(uint));
|
|
}
|
|
|
|
if(enableBigTilePrepass)
|
|
{
|
|
s_GenListPerBigTileKernel = buildPerBigTileLightListShader.FindKernel("BigTileLightListGen");
|
|
buildPerBigTileLightListShader.SetBuffer(s_GenListPerBigTileKernel, "g_vBoundsBuffer", s_AABBBoundsBuffer);
|
|
buildPerBigTileLightListShader.SetBuffer(s_GenListPerBigTileKernel, "g_vLightData", s_LightDataBuffer);
|
|
buildPerBigTileLightListShader.SetBuffer(s_GenListPerBigTileKernel, "g_data", s_ConvexBoundsBuffer);
|
|
}
|
|
|
|
m_CookieTexArray = new TextureCache2D();
|
|
m_CubeCookieTexArray = new TextureCacheCubemap();
|
|
m_CubeReflTexArray = new TextureCacheCubemap();
|
|
m_CookieTexArray.AllocTextureArray(8, m_TextureSettings.spotCookieSize, m_TextureSettings.spotCookieSize, TextureFormat.RGBA32, true);
|
|
m_CubeCookieTexArray.AllocTextureArray(4, m_TextureSettings.pointCookieSize, TextureFormat.RGBA32, true);
|
|
m_CubeReflTexArray.AllocTextureArray(64, m_TextureSettings.reflectionCubemapSize, TextureFormat.BC6H, true);
|
|
|
|
//m_DeferredMaterial.SetTexture("_spotCookieTextures", m_cookieTexArray.GetTexCache());
|
|
//m_DeferredMaterial.SetTexture("_pointCookieTextures", m_cubeCookieTexArray.GetTexCache());
|
|
//m_DeferredReflectionMaterial.SetTexture("_reflCubeTextures", m_cubeReflTexArray.GetTexCache());
|
|
|
|
m_MatWorldToShadow = new Matrix4x4[k_MaxLights * k_MaxShadowmapPerLights];
|
|
m_DirShadowSplitSpheres = new Vector4[k_MaxDirectionalSplit];
|
|
m_Shadow3X3PCFTerms = new Vector4[4];
|
|
m_ShadowPass = new ShadowRenderPass(m_ShadowSettings);
|
|
|
|
m_SkyboxHelper = new SkyboxHelper();
|
|
m_SkyboxHelper.CreateMesh();
|
|
|
|
m_BlitMaterial = new Material(finalPassShader) { hideFlags = HideFlags.HideAndDontSave };
|
|
m_DebugLightBoundsMaterial = new Material(debugLightBoundsShader) { hideFlags = HideFlags.HideAndDontSave };
|
|
|
|
m_NHxRoughnessTexture = GenerateRoughnessTexture();
|
|
m_LightAttentuationTexture = GenerateLightAttenuationTexture();
|
|
|
|
|
|
s_LightList = null;
|
|
s_BigTileLightList = null;
|
|
|
|
m_shadowBufferID = Shader.PropertyToID("g_tShadowBuffer");
|
|
}
|
|
|
|
static void SetupGBuffer(int width, int height, CommandBuffer cmd)
|
|
{
|
|
var format10 = RenderTextureFormat.ARGB32;
|
|
if (SystemInfo.SupportsRenderTextureFormat(RenderTextureFormat.ARGB2101010))
|
|
format10 = RenderTextureFormat.ARGB2101010;
|
|
var formatHDR = RenderTextureFormat.DefaultHDR;
|
|
|
|
//@TODO: cleanup, right now only because we want to use unmodified Standard shader that encodes emission differently based on HDR or not,
|
|
// so we make it think we always render in HDR
|
|
cmd.EnableShaderKeyword ("UNITY_HDR_ON");
|
|
|
|
//@TODO: GetGraphicsCaps().buggyMRTSRGBWriteFlag
|
|
cmd.GetTemporaryRT(s_GBufferAlbedo, width, height, 0, FilterMode.Point, RenderTextureFormat.ARGB32, RenderTextureReadWrite.Default);
|
|
cmd.GetTemporaryRT(s_GBufferSpecRough, width, height, 0, FilterMode.Point, RenderTextureFormat.ARGB32, RenderTextureReadWrite.Default);
|
|
cmd.GetTemporaryRT(s_GBufferNormal, width, height, 0, FilterMode.Point, format10, RenderTextureReadWrite.Linear);
|
|
cmd.GetTemporaryRT(s_GBufferEmission, width, height, 0, FilterMode.Point, formatHDR, RenderTextureReadWrite.Linear);
|
|
cmd.GetTemporaryRT(s_GBufferZ, width, height, 24, FilterMode.Point, RenderTextureFormat.Depth);
|
|
cmd.GetTemporaryRT(s_CameraDepthTexture, width, height, 24, FilterMode.Point, RenderTextureFormat.Depth);
|
|
cmd.GetTemporaryRT(s_CameraTarget, width, height, 0, FilterMode.Point, formatHDR, RenderTextureReadWrite.Default, 1, true); // rtv/uav
|
|
|
|
var colorMRTs = new RenderTargetIdentifier[4] { s_GBufferAlbedo, s_GBufferSpecRough, s_GBufferNormal, s_GBufferEmission };
|
|
cmd.SetRenderTarget(colorMRTs, new RenderTargetIdentifier(s_GBufferZ));
|
|
cmd.ClearRenderTarget(true, true, new Color(0, 0, 0, 0));
|
|
|
|
//@TODO: render VR occlusion mesh
|
|
}
|
|
|
|
static void RenderGBuffer(CullResults cull, Camera camera, RenderLoop loop)
|
|
{
|
|
// setup GBuffer for rendering
|
|
var cmd = new CommandBuffer { name = "Create G-Buffer" };
|
|
SetupGBuffer(camera.pixelWidth, camera.pixelHeight, cmd);
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
|
|
// render opaque objects using Deferred pass
|
|
var settings = new DrawRendererSettings(cull, camera, new ShaderPassName("Deferred"))
|
|
{
|
|
sorting = { flags = SortFlags.CommonOpaque },
|
|
rendererConfiguration = RendererConfiguration.PerObjectLightmaps
|
|
};
|
|
|
|
//@TODO: need to get light probes + LPPV too?
|
|
settings.inputFilter.SetQueuesOpaque();
|
|
settings.rendererConfiguration = RendererConfiguration.PerObjectLightmaps | RendererConfiguration.PerObjectLightProbe;
|
|
loop.DrawRenderers(ref settings);
|
|
}
|
|
|
|
void RenderForward(CullResults cull, Camera camera, RenderLoop loop, bool opaquesOnly)
|
|
{
|
|
var cmd = new CommandBuffer { name = opaquesOnly ? "Prep Opaques Only Forward Pass" : "Prep Forward Pass" };
|
|
|
|
bool useFptl = opaquesOnly && usingFptl; // requires depth pre-pass for forward opaques!
|
|
|
|
bool haveTiledSolution = opaquesOnly || enableClustered;
|
|
cmd.EnableShaderKeyword(haveTiledSolution ? "TILED_FORWARD" : "REGULAR_FORWARD" );
|
|
cmd.SetGlobalFloat("g_isOpaquesOnlyEnabled", useFptl ? 1 : 0); // leaving this as a dynamic toggle for now for forward opaques to keep shader variants down.
|
|
cmd.SetGlobalBuffer("g_vLightListGlobal", useFptl ? s_LightList : s_PerVoxelLightLists);
|
|
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
|
|
// render opaque objects using Deferred pass
|
|
var settings = new DrawRendererSettings(cull, camera, new ShaderPassName("ForwardSinglePass"))
|
|
{
|
|
sorting = { flags = SortFlags.CommonOpaque }
|
|
};
|
|
settings.rendererConfiguration = RendererConfiguration.PerObjectLightmaps | RendererConfiguration.PerObjectLightProbe;
|
|
if (opaquesOnly) settings.inputFilter.SetQueuesOpaque();
|
|
else settings.inputFilter.SetQueuesTransparent();
|
|
|
|
loop.DrawRenderers(ref settings);
|
|
}
|
|
|
|
static void DepthOnlyForForwardOpaques(CullResults cull, Camera camera, RenderLoop loop)
|
|
{
|
|
var cmd = new CommandBuffer { name = "Forward Opaques - Depth Only" };
|
|
cmd.SetRenderTarget(new RenderTargetIdentifier(s_GBufferZ));
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
|
|
// render opaque objects using Deferred pass
|
|
var settings = new DrawRendererSettings(cull, camera, new ShaderPassName("DepthOnly"))
|
|
{
|
|
sorting = { flags = SortFlags.CommonOpaque }
|
|
};
|
|
settings.inputFilter.SetQueuesOpaque();
|
|
loop.DrawRenderers(ref settings);
|
|
}
|
|
|
|
bool usingFptl
|
|
{
|
|
get
|
|
{
|
|
bool isEnabledMSAA = false;
|
|
Debug.Assert(!isEnabledMSAA || enableClustered);
|
|
bool disableFptl = (disableFptlWhenClustered && enableClustered) || isEnabledMSAA;
|
|
return !disableFptl;
|
|
}
|
|
}
|
|
|
|
static void CopyDepthAfterGBuffer(RenderLoop loop)
|
|
{
|
|
var cmd = new CommandBuffer { name = "Copy depth" };
|
|
cmd.CopyTexture(new RenderTargetIdentifier(s_GBufferZ), new RenderTargetIdentifier(s_CameraDepthTexture));
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
}
|
|
|
|
void DoTiledDeferredLighting(Camera camera, RenderLoop loop, int numLights, int numDirLights)
|
|
{
|
|
var bUseClusteredForDeferred = !usingFptl;
|
|
var cmd = new CommandBuffer();
|
|
|
|
m_DeferredMaterial.EnableKeyword(bUseClusteredForDeferred ? "USE_CLUSTERED_LIGHTLIST" : "USE_FPTL_LIGHTLIST");
|
|
m_DeferredReflectionMaterial.EnableKeyword(bUseClusteredForDeferred ? "USE_CLUSTERED_LIGHTLIST" : "USE_FPTL_LIGHTLIST");
|
|
if (enableDrawTileDebug) {
|
|
m_DeferredMaterial.EnableKeyword ("ENABLE_DEBUG");
|
|
} else {
|
|
m_DeferredMaterial.DisableKeyword ("ENABLE_DEBUG");
|
|
}
|
|
|
|
if (enableReflectionProbeDebug) {
|
|
m_DeferredReflectionMaterial.EnableKeyword ("ENABLE_DEBUG");
|
|
} else {
|
|
m_DeferredReflectionMaterial.DisableKeyword ("ENABLE_DEBUG");
|
|
}
|
|
|
|
cmd.SetGlobalBuffer("g_vLightListGlobal", bUseClusteredForDeferred ? s_PerVoxelLightLists : s_LightList); // opaques list (unless MSAA possibly)
|
|
|
|
// In case of bUseClusteredForDeferred disable toggle option since we're using m_perVoxelLightLists as opposed to lightList
|
|
if (bUseClusteredForDeferred)
|
|
{
|
|
cmd.SetGlobalFloat("g_isOpaquesOnlyEnabled", 0);
|
|
}
|
|
|
|
cmd.name = "DoTiledDeferredLighting";
|
|
|
|
//cmd.SetRenderTarget(new RenderTargetIdentifier(kGBufferEmission), new RenderTargetIdentifier(kGBufferZ));
|
|
//cmd.Blit (kGBufferNormal, (RenderTexture)null); // debug: display normals
|
|
|
|
if (enableComputeLightEvaluation) //TODO: temporary workaround for "All kernels must use same constant buffer layouts"
|
|
{
|
|
var w = camera.pixelWidth;
|
|
var h = camera.pixelHeight;
|
|
var numTilesX = (w + 7) / 8;
|
|
var numTilesY = (h + 7) / 8;
|
|
|
|
string kernelName = "ShadeDeferred" + (bUseClusteredForDeferred ? "_Clustered" : "_Fptl") + (enableDrawTileDebug ? "_Debug" : "");
|
|
int kernel = deferredComputeShader.FindKernel(kernelName);
|
|
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_CameraDepthTexture", new RenderTargetIdentifier(s_CameraDepthTexture));
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_CameraGBufferTexture0", new RenderTargetIdentifier(s_GBufferAlbedo));
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_CameraGBufferTexture1", new RenderTargetIdentifier(s_GBufferSpecRough));
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_CameraGBufferTexture2", new RenderTargetIdentifier(s_GBufferNormal));
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_CameraGBufferTexture3", new RenderTargetIdentifier(s_GBufferEmission));
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_spotCookieTextures", m_CookieTexArray.GetTexCache());
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_pointCookieTextures", m_CubeCookieTexArray.GetTexCache());
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_reflCubeTextures", m_CubeReflTexArray.GetTexCache());
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_reflRootCubeTexture", ReflectionProbe.defaultTexture);
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "g_tShadowBuffer", new RenderTargetIdentifier(m_shadowBufferID));
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "unity_NHxRoughness", m_NHxRoughnessTexture);
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "_LightTextureB0", m_LightAttentuationTexture);
|
|
|
|
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_vLightListGlobal", bUseClusteredForDeferred ? s_PerVoxelLightLists : s_LightList);
|
|
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_vLightData", s_LightDataBuffer);
|
|
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_dirLightData", s_DirLightList);
|
|
|
|
var defdecode = ReflectionProbe.defaultTextureHDRDecodeValues;
|
|
cmd.SetComputeFloatParam(deferredComputeShader, "_reflRootHdrDecodeMult", defdecode.x);
|
|
cmd.SetComputeFloatParam(deferredComputeShader, "_reflRootHdrDecodeExp", defdecode.y);
|
|
|
|
cmd.SetComputeFloatParam(deferredComputeShader, "g_fClustScale", m_ClustScale);
|
|
cmd.SetComputeFloatParam(deferredComputeShader, "g_fClustBase", k_ClustLogBase);
|
|
cmd.SetComputeFloatParam(deferredComputeShader, "g_fNearPlane", camera.nearClipPlane);
|
|
cmd.SetComputeFloatParam(deferredComputeShader, "g_fFarPlane", camera.farClipPlane);
|
|
cmd.SetComputeIntParam(deferredComputeShader, "g_iLog2NumClusters", k_Log2NumClusters);
|
|
cmd.SetComputeIntParam(deferredComputeShader, "g_isLogBaseBufferEnabled", k_UseDepthBuffer ? 1 : 0);
|
|
cmd.SetComputeIntParam(deferredComputeShader, "g_isOpaquesOnlyEnabled", 0);
|
|
|
|
|
|
//
|
|
var proj = camera.projectionMatrix;
|
|
var temp = new Matrix4x4();
|
|
temp.SetRow(0, new Vector4(1.0f, 0.0f, 0.0f, 0.0f));
|
|
temp.SetRow(1, new Vector4(0.0f, 1.0f, 0.0f, 0.0f));
|
|
temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f));
|
|
temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
|
|
var projh = temp * proj;
|
|
var invProjh = projh.inverse;
|
|
|
|
temp.SetRow(0, new Vector4(0.5f * w, 0.0f, 0.0f, 0.5f * w));
|
|
temp.SetRow(1, new Vector4(0.0f, 0.5f * h, 0.0f, 0.5f * h));
|
|
temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f));
|
|
temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
|
|
var projscr = temp * proj;
|
|
var invProjscr = projscr.inverse;
|
|
|
|
cmd.SetComputeIntParam(deferredComputeShader, "g_iNrVisibLights", numLights);
|
|
SetMatrixCS(cmd, deferredComputeShader, "g_mScrProjection", projscr);
|
|
SetMatrixCS(cmd, deferredComputeShader, "g_mInvScrProjection", invProjscr);
|
|
SetMatrixCS(cmd, deferredComputeShader, "g_mViewToWorld", camera.cameraToWorldMatrix);
|
|
|
|
|
|
if (bUseClusteredForDeferred)
|
|
{
|
|
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_vLayeredOffsetsBuffer", s_PerVoxelOffset);
|
|
if (k_UseDepthBuffer)
|
|
{
|
|
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_logBaseBuffer", s_PerTileLogBaseTweak);
|
|
}
|
|
}
|
|
|
|
cmd.SetComputeIntParam(deferredComputeShader, "g_widthRT", w);
|
|
cmd.SetComputeIntParam(deferredComputeShader, "g_heightRT", h);
|
|
cmd.SetComputeIntParam(deferredComputeShader, "g_nNumDirLights", numDirLights);
|
|
cmd.SetComputeBufferParam(deferredComputeShader, kernel, "g_dirLightData", s_DirLightList);
|
|
cmd.SetComputeTextureParam(deferredComputeShader, kernel, "uavOutput", new RenderTargetIdentifier(s_CameraTarget));
|
|
|
|
SetMatrixArrayCS(cmd, deferredComputeShader, "g_matWorldToShadow", m_MatWorldToShadow);
|
|
SetVectorArrayCS(cmd, deferredComputeShader, "g_vDirShadowSplitSpheres", m_DirShadowSplitSpheres);
|
|
cmd.SetComputeVectorParam(deferredComputeShader, "g_vShadow3x3PCFTerms0", m_Shadow3X3PCFTerms[0]);
|
|
cmd.SetComputeVectorParam(deferredComputeShader, "g_vShadow3x3PCFTerms1", m_Shadow3X3PCFTerms[1]);
|
|
cmd.SetComputeVectorParam(deferredComputeShader, "g_vShadow3x3PCFTerms2", m_Shadow3X3PCFTerms[2]);
|
|
cmd.SetComputeVectorParam(deferredComputeShader, "g_vShadow3x3PCFTerms3", m_Shadow3X3PCFTerms[3]);
|
|
|
|
cmd.DispatchCompute(deferredComputeShader, kernel, numTilesX, numTilesY, 1);
|
|
}
|
|
else
|
|
{
|
|
cmd.Blit(BuiltinRenderTextureType.CameraTarget, s_CameraTarget, m_DeferredMaterial, 0);
|
|
cmd.Blit(BuiltinRenderTextureType.CameraTarget, s_CameraTarget, m_DeferredReflectionMaterial, 0);
|
|
}
|
|
|
|
|
|
// Set the intermediate target for compositing (skybox, etc)
|
|
cmd.SetRenderTarget(new RenderTargetIdentifier(s_CameraTarget), new RenderTargetIdentifier(s_CameraDepthTexture));
|
|
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
}
|
|
|
|
private static void SetMatrixCS(CommandBuffer cmd, ComputeShader shadercs, string name, Matrix4x4 mat)
|
|
{
|
|
var data = new float[16];
|
|
|
|
for (int c = 0; c < 4; c++)
|
|
for (int r = 0; r < 4; r++)
|
|
data[4 * c + r] = mat[r, c];
|
|
|
|
cmd.SetComputeFloatParams(shadercs, name, data);
|
|
}
|
|
|
|
private static void SetMatrixArrayCS(CommandBuffer cmd, ComputeShader shadercs, string name, Matrix4x4[] matArray)
|
|
{
|
|
int numMatrices = matArray.Length;
|
|
var data = new float[numMatrices * 16];
|
|
|
|
for (int n = 0; n < numMatrices; n++)
|
|
for (int c = 0; c < 4; c++)
|
|
for (int r = 0; r < 4; r++)
|
|
data[16 * n + 4 * c + r] = matArray[n][r, c];
|
|
|
|
cmd.SetComputeFloatParams(shadercs, name, data);
|
|
}
|
|
|
|
private static void SetVectorArrayCS(CommandBuffer cmd, ComputeShader shadercs, string name, Vector4[] vecArray)
|
|
{
|
|
int numVectors = vecArray.Length;
|
|
var data = new float[numVectors * 4];
|
|
|
|
for (int n = 0; n < numVectors; n++)
|
|
for (int i = 0; i < 4; i++)
|
|
data[4 * n + i] = vecArray[n][i];
|
|
|
|
cmd.SetComputeFloatParams(shadercs, name, data);
|
|
}
|
|
|
|
static Matrix4x4 GetFlipMatrix()
|
|
{
|
|
Matrix4x4 flip = Matrix4x4.identity;
|
|
bool isLeftHand = ((int) LightDefinitions.USE_LEFTHAND_CAMERASPACE)!=0;
|
|
if(isLeftHand) flip.SetColumn(2, new Vector4(0.0f, 0.0f, -1.0f, 0.0f));
|
|
return flip;
|
|
}
|
|
|
|
static Matrix4x4 WorldToCamera(Camera camera)
|
|
{
|
|
return GetFlipMatrix() * camera.worldToCameraMatrix;
|
|
}
|
|
|
|
static Matrix4x4 CameraToWorld(Camera camera)
|
|
{
|
|
return camera.cameraToWorldMatrix * GetFlipMatrix();
|
|
}
|
|
|
|
static Matrix4x4 CameraProjection(Camera camera)
|
|
{
|
|
return camera.projectionMatrix * GetFlipMatrix();
|
|
}
|
|
|
|
static int UpdateDirectionalLights(Camera camera, IList<VisibleLight> visibleLights)
|
|
{
|
|
var dirLightCount = 0;
|
|
var lights = new List<DirectionalLight>();
|
|
var worldToView = WorldToCamera(camera);
|
|
|
|
for (int nLight = 0; nLight < visibleLights.Count; nLight++)
|
|
{
|
|
var light = visibleLights[nLight];
|
|
if (light.lightType == LightType.Directional)
|
|
{
|
|
Debug.Assert(dirLightCount < MaxNumDirLights, "Too many directional lights.");
|
|
|
|
var l = new DirectionalLight();
|
|
|
|
var lightToWorld = light.localToWorld;
|
|
|
|
Vector3 lightDir = lightToWorld.GetColumn(2); // Z axis in world space
|
|
|
|
// represents a left hand coordinate system in world space
|
|
Vector3 vx = lightToWorld.GetColumn(0); // X axis in world space
|
|
Vector3 vy = lightToWorld.GetColumn(1); // Y axis in world space
|
|
var vz = lightDir; // Z axis in world space
|
|
|
|
vx = worldToView.MultiplyVector(vx);
|
|
vy = worldToView.MultiplyVector(vy);
|
|
vz = worldToView.MultiplyVector(vz);
|
|
|
|
l.shadowLightIndex = (light.light.shadows != LightShadows.None) ? (uint)nLight : 0xffffffff;
|
|
|
|
l.lightAxisX = vx;
|
|
l.lightAxisY = vy;
|
|
l.lightAxisZ = vz;
|
|
|
|
l.color.Set(light.finalColor.r, light.finalColor.g, light.finalColor.b);
|
|
l.intensity = light.light.intensity;
|
|
|
|
lights.Add(l);
|
|
dirLightCount++;
|
|
}
|
|
}
|
|
s_DirLightList.SetData(lights.ToArray());
|
|
|
|
return dirLightCount;
|
|
}
|
|
|
|
void UpdateShadowConstants(IList<VisibleLight> visibleLights, ref ShadowOutput shadow)
|
|
{
|
|
var nNumLightsIncludingTooMany = 0;
|
|
|
|
var numLights = 0;
|
|
|
|
var lightShadowIndex_LightParams = new Vector4[k_MaxLights];
|
|
var lightFalloffParams = new Vector4[k_MaxLights];
|
|
|
|
for (int nLight = 0; nLight < visibleLights.Count; nLight++)
|
|
{
|
|
nNumLightsIncludingTooMany++;
|
|
if (nNumLightsIncludingTooMany > k_MaxLights)
|
|
continue;
|
|
|
|
var light = visibleLights[nLight];
|
|
var lightType = light.lightType;
|
|
var position = light.light.transform.position;
|
|
var lightDir = light.light.transform.forward.normalized;
|
|
|
|
// Setup shadow data arrays
|
|
var hasShadows = shadow.GetShadowSliceCountLightIndex(nLight) != 0;
|
|
|
|
if (lightType == LightType.Directional)
|
|
{
|
|
lightShadowIndex_LightParams[numLights] = new Vector4(0, 0, 1, 1);
|
|
lightFalloffParams[numLights] = new Vector4(0.0f, 0.0f, float.MaxValue, (float)lightType);
|
|
|
|
if (hasShadows)
|
|
{
|
|
for (int s = 0; s < k_MaxDirectionalSplit; ++s)
|
|
{
|
|
m_DirShadowSplitSpheres[s] = shadow.directionalShadowSplitSphereSqr[s];
|
|
}
|
|
}
|
|
}
|
|
else if (lightType == LightType.Point)
|
|
{
|
|
lightShadowIndex_LightParams[numLights] = new Vector4(0, 0, 1, 1);
|
|
lightFalloffParams[numLights] = new Vector4(1.0f, 0.0f, light.range * light.range, (float)lightType);
|
|
}
|
|
else if (lightType == LightType.Spot)
|
|
{
|
|
lightShadowIndex_LightParams[numLights] = new Vector4(0, 0, 1, 1);
|
|
lightFalloffParams[numLights] = new Vector4(1.0f, 0.0f, light.range * light.range, (float)lightType);
|
|
}
|
|
|
|
if (hasShadows)
|
|
{
|
|
// Enable shadows
|
|
lightShadowIndex_LightParams[numLights].x = 1;
|
|
for (int s = 0; s < shadow.GetShadowSliceCountLightIndex(nLight); ++s)
|
|
{
|
|
var shadowSliceIndex = shadow.GetShadowSliceIndex(nLight, s);
|
|
m_MatWorldToShadow[numLights * k_MaxShadowmapPerLights + s] = shadow.shadowSlices[shadowSliceIndex].shadowTransform.transpose;
|
|
}
|
|
}
|
|
|
|
numLights++;
|
|
}
|
|
|
|
// Warn if too many lights found
|
|
if (nNumLightsIncludingTooMany > k_MaxLights)
|
|
{
|
|
if (nNumLightsIncludingTooMany > m_WarnedTooManyLights)
|
|
{
|
|
Debug.LogError("ERROR! Found " + nNumLightsIncludingTooMany + " runtime lights! Valve renderer supports up to " + k_MaxLights +
|
|
" active runtime lights at a time!\nDisabling " + (nNumLightsIncludingTooMany - k_MaxLights) + " runtime light" +
|
|
((nNumLightsIncludingTooMany - k_MaxLights) > 1 ? "s" : "") + "!\n");
|
|
}
|
|
m_WarnedTooManyLights = nNumLightsIncludingTooMany;
|
|
}
|
|
else
|
|
{
|
|
if (m_WarnedTooManyLights > 0)
|
|
{
|
|
m_WarnedTooManyLights = 0;
|
|
Debug.Log("SUCCESS! Found " + nNumLightsIncludingTooMany + " runtime lights which is within the supported number of lights, " + k_MaxLights + ".\n\n");
|
|
}
|
|
}
|
|
|
|
// PCF 3x3 Shadows
|
|
var flTexelEpsilonX = 1.0f / m_ShadowSettings.shadowAtlasWidth;
|
|
var flTexelEpsilonY = 1.0f / m_ShadowSettings.shadowAtlasHeight;
|
|
m_Shadow3X3PCFTerms[0] = new Vector4(20.0f / 267.0f, 33.0f / 267.0f, 55.0f / 267.0f, 0.0f);
|
|
m_Shadow3X3PCFTerms[1] = new Vector4(flTexelEpsilonX, flTexelEpsilonY, -flTexelEpsilonX, -flTexelEpsilonY);
|
|
m_Shadow3X3PCFTerms[2] = new Vector4(flTexelEpsilonX, flTexelEpsilonY, 0.0f, 0.0f);
|
|
m_Shadow3X3PCFTerms[3] = new Vector4(-flTexelEpsilonX, -flTexelEpsilonY, 0.0f, 0.0f);
|
|
}
|
|
|
|
int GenerateSourceLightBuffers(Camera camera, CullResults inputs)
|
|
{
|
|
var probes = inputs.visibleReflectionProbes;
|
|
//ReflectionProbe[] probes = Object.FindObjectsOfType<ReflectionProbe>();
|
|
|
|
var numModels = (int)LightDefinitions.NR_LIGHT_MODELS;
|
|
var numVolTypes = (int)LightDefinitions.MAX_TYPES;
|
|
var numEntries = new int[numModels,numVolTypes];
|
|
var offsets = new int[numModels,numVolTypes];
|
|
var numEntries2nd = new int[numModels,numVolTypes];
|
|
|
|
// first pass. Figure out how much we have of each and establish offsets
|
|
foreach (var cl in inputs.visibleLights)
|
|
{
|
|
var volType = cl.lightType==LightType.Spot ? LightDefinitions.SPOT_LIGHT : (cl.lightType==LightType.Point ? LightDefinitions.SPHERE_LIGHT : -1);
|
|
if(volType>=0) ++numEntries[LightDefinitions.DIRECT_LIGHT,volType];
|
|
}
|
|
|
|
foreach (var rl in probes)
|
|
{
|
|
var volType = LightDefinitions.BOX_LIGHT; // always a box for now
|
|
if(rl.texture!=null) ++numEntries[LightDefinitions.REFLECTION_LIGHT,volType];
|
|
}
|
|
|
|
// add decals here too similar to the above
|
|
|
|
// establish offsets
|
|
for(var m=0; m<numModels; m++)
|
|
{
|
|
offsets[m,0] = m==0 ? 0 : (numEntries[m-1,numVolTypes-1] + offsets[m-1,numVolTypes-1]);
|
|
for(var v=1; v<numVolTypes; v++) offsets[m,v] = numEntries[m,v-1]+offsets[m,v-1];
|
|
}
|
|
|
|
|
|
var numLights = inputs.visibleLights.Length;
|
|
var numProbes = probes.Length;
|
|
var numVolumes = numLights + numProbes;
|
|
|
|
|
|
var lightData = new SFiniteLightData[numVolumes];
|
|
var boundData = new SFiniteLightBound[numVolumes];
|
|
var worldToView = WorldToCamera(camera);
|
|
bool isNegDeterminant = Vector3.Dot(worldToView.GetColumn(0), Vector3.Cross(worldToView.GetColumn(1), worldToView.GetColumn(2)))<0.0f; // 3x3 Determinant.
|
|
|
|
uint shadowLightIndex = 0;
|
|
foreach (var cl in inputs.visibleLights)
|
|
{
|
|
var range = cl.range;
|
|
|
|
var lightToWorld = cl.localToWorld;
|
|
|
|
Vector3 lightPos = lightToWorld.GetColumn(3);
|
|
|
|
var bound = new SFiniteLightBound();
|
|
var light = new SFiniteLightData();
|
|
|
|
bound.boxAxisX.Set(1, 0, 0);
|
|
bound.boxAxisY.Set(0, 1, 0);
|
|
bound.boxAxisZ.Set(0, 0, 1);
|
|
bound.scaleXY.Set(1.0f, 1.0f);
|
|
bound.radius = range;
|
|
|
|
light.flags = 0;
|
|
light.recipRange = 1.0f / range;
|
|
light.color.Set(cl.finalColor.r, cl.finalColor.g, cl.finalColor.b);
|
|
light.sliceIndex = 0;
|
|
light.lightModel = (uint)LightDefinitions.DIRECT_LIGHT;
|
|
light.shadowLightIndex = shadowLightIndex;
|
|
shadowLightIndex++;
|
|
|
|
var bHasCookie = cl.light.cookie != null;
|
|
var bHasShadow = cl.light.shadows != LightShadows.None;
|
|
|
|
var idxOut = 0;
|
|
|
|
if (cl.lightType == LightType.Spot)
|
|
{
|
|
var isCircularSpot = !bHasCookie;
|
|
if (!isCircularSpot) // square spots always have cookie
|
|
{
|
|
light.sliceIndex = m_CookieTexArray.FetchSlice(cl.light.cookie);
|
|
}
|
|
|
|
Vector3 lightDir = lightToWorld.GetColumn(2); // Z axis in world space
|
|
|
|
// represents a left hand coordinate system in world space
|
|
Vector3 vx = lightToWorld.GetColumn(0); // X axis in world space
|
|
Vector3 vy = lightToWorld.GetColumn(1); // Y axis in world space
|
|
var vz = lightDir; // Z axis in world space
|
|
|
|
// transform to camera space (becomes a left hand coordinate frame in Unity since Determinant(worldToView)<0)
|
|
vx = worldToView.MultiplyVector(vx);
|
|
vy = worldToView.MultiplyVector(vy);
|
|
vz = worldToView.MultiplyVector(vz);
|
|
|
|
|
|
const float pi = 3.1415926535897932384626433832795f;
|
|
const float degToRad = (float)(pi / 180.0);
|
|
|
|
|
|
var sa = cl.light.spotAngle;
|
|
|
|
var cs = Mathf.Cos(0.5f * sa * degToRad);
|
|
var si = Mathf.Sin(0.5f * sa * degToRad);
|
|
var ta = cs > 0.0f ? (si / cs) : FltMax;
|
|
|
|
var cota = si > 0.0f ? (cs / si) : FltMax;
|
|
|
|
//const float cotasa = l.GetCotanHalfSpotAngle();
|
|
|
|
// apply nonuniform scale to OBB of spot light
|
|
var squeeze = true;//sa < 0.7f * 90.0f; // arb heuristic
|
|
var fS = squeeze ? ta : si;
|
|
bound.center = worldToView.MultiplyPoint(lightPos + ((0.5f * range) * lightDir)); // use mid point of the spot as the center of the bounding volume for building screen-space AABB for tiled lighting.
|
|
|
|
light.lightAxisX = vx;
|
|
light.lightAxisY = vy;
|
|
light.lightAxisZ = vz;
|
|
|
|
// scale axis to match box or base of pyramid
|
|
bound.boxAxisX = (fS * range) * vx;
|
|
bound.boxAxisY = (fS * range) * vy;
|
|
bound.boxAxisZ = (0.5f * range) * vz;
|
|
|
|
// generate bounding sphere radius
|
|
var fAltDx = si;
|
|
var fAltDy = cs;
|
|
fAltDy = fAltDy - 0.5f;
|
|
//if(fAltDy<0) fAltDy=-fAltDy;
|
|
|
|
fAltDx *= range; fAltDy *= range;
|
|
|
|
var altDist = Mathf.Sqrt(fAltDy * fAltDy + (isCircularSpot ? 1.0f : 2.0f) * fAltDx * fAltDx);
|
|
bound.radius = altDist > (0.5f * range) ? altDist : (0.5f * range); // will always pick fAltDist
|
|
bound.scaleXY = squeeze ? new Vector2(0.01f, 0.01f) : new Vector2(1.0f, 1.0f);
|
|
|
|
// fill up ldata
|
|
light.lightType = (uint)LightDefinitions.SPOT_LIGHT;
|
|
light.lightPos = worldToView.MultiplyPoint(lightPos);
|
|
light.radiusSq = range * range;
|
|
light.penumbra = cs;
|
|
light.cotan = cota;
|
|
light.flags |= (isCircularSpot ? LightDefinitions.IS_CIRCULAR_SPOT_SHAPE : 0);
|
|
|
|
light.flags |= (bHasCookie ? LightDefinitions.HAS_COOKIE_TEXTURE : 0);
|
|
light.flags |= (bHasShadow ? LightDefinitions.HAS_SHADOW : 0);
|
|
|
|
int i = LightDefinitions.DIRECT_LIGHT, j = LightDefinitions.SPOT_LIGHT;
|
|
idxOut = numEntries2nd[i,j] + offsets[i,j]; ++numEntries2nd[i,j];
|
|
}
|
|
else if (cl.lightType == LightType.Point)
|
|
{
|
|
if (bHasCookie)
|
|
{
|
|
light.sliceIndex = m_CubeCookieTexArray.FetchSlice(cl.light.cookie);
|
|
}
|
|
|
|
bound.center = worldToView.MultiplyPoint(lightPos);
|
|
bound.boxAxisX.Set(range, 0, 0);
|
|
bound.boxAxisY.Set(0, range, 0);
|
|
bound.boxAxisZ.Set(0, 0, isNegDeterminant ? (-range) : range); // transform to camera space (becomes a left hand coordinate frame in Unity since Determinant(worldToView)<0)
|
|
bound.scaleXY.Set(1.0f, 1.0f);
|
|
bound.radius = range;
|
|
|
|
// represents a left hand coordinate system in world space since det(worldToView)<0
|
|
var lightToView = worldToView * lightToWorld;
|
|
Vector3 vx = lightToView.GetColumn(0);
|
|
Vector3 vy = lightToView.GetColumn(1);
|
|
Vector3 vz = lightToView.GetColumn(2);
|
|
|
|
// fill up ldata
|
|
light.lightType = (uint)LightDefinitions.SPHERE_LIGHT;
|
|
light.lightPos = bound.center;
|
|
light.radiusSq = range * range;
|
|
|
|
light.lightAxisX = vx;
|
|
light.lightAxisY = vy;
|
|
light.lightAxisZ = vz;
|
|
|
|
light.flags |= (bHasCookie ? LightDefinitions.HAS_COOKIE_TEXTURE : 0);
|
|
light.flags |= (bHasShadow ? LightDefinitions.HAS_SHADOW : 0);
|
|
|
|
int i = LightDefinitions.DIRECT_LIGHT, j = LightDefinitions.SPHERE_LIGHT;
|
|
idxOut = numEntries2nd[i,j] + offsets[i,j]; ++numEntries2nd[i,j];
|
|
}
|
|
else
|
|
{
|
|
//Assert(false);
|
|
}
|
|
|
|
// next light
|
|
if (cl.lightType == LightType.Spot || cl.lightType == LightType.Point)
|
|
{
|
|
boundData[idxOut] = bound;
|
|
lightData[idxOut] = light;
|
|
}
|
|
}
|
|
var numLightsOut = offsets[LightDefinitions.DIRECT_LIGHT, numVolTypes-1] + numEntries[LightDefinitions.DIRECT_LIGHT, numVolTypes-1];
|
|
|
|
// probe.m_BlendDistance
|
|
// Vector3f extents = 0.5*Abs(probe.m_BoxSize);
|
|
// C center of rendered refl box <-- GetComponent (Transform).GetPosition() + m_BoxOffset;
|
|
// cube map capture point: GetComponent (Transform).GetPosition()
|
|
// shader parameter min and max are C+/-(extents+blendDistance)
|
|
foreach (var rl in probes)
|
|
{
|
|
var cubemap = rl.texture;
|
|
|
|
// always a box for now
|
|
if (cubemap == null)
|
|
continue;
|
|
|
|
var bndData = new SFiniteLightBound();
|
|
var lgtData = new SFiniteLightData();
|
|
|
|
var idxOut = 0;
|
|
lgtData.flags = 0;
|
|
|
|
var bnds = rl.bounds;
|
|
var boxOffset = rl.center; // reflection volume offset relative to cube map capture point
|
|
var blendDistance = rl.blendDistance;
|
|
|
|
var mat = rl.localToWorld;
|
|
|
|
// implicit in CalculateHDRDecodeValues() --> float ints = rl.intensity;
|
|
var boxProj = (rl.boxProjection != 0);
|
|
var decodeVals = rl.hdr;
|
|
//Vector4 decodeVals = rl.CalculateHDRDecodeValues();
|
|
|
|
// C is reflection volume center in world space (NOT same as cube map capture point)
|
|
var e = bnds.extents; // 0.5f * Vector3.Max(-boxSizes[p], boxSizes[p]);
|
|
//Vector3 C = bnds.center; // P + boxOffset;
|
|
var C = mat.MultiplyPoint(boxOffset); // same as commented out line above when rot is identity
|
|
|
|
var combinedExtent = e + new Vector3(blendDistance, blendDistance, blendDistance);
|
|
|
|
Vector3 vx = mat.GetColumn(0);
|
|
Vector3 vy = mat.GetColumn(1);
|
|
Vector3 vz = mat.GetColumn(2);
|
|
|
|
// transform to camera space (becomes a left hand coordinate frame in Unity since Determinant(worldToView)<0)
|
|
vx = worldToView.MultiplyVector(vx);
|
|
vy = worldToView.MultiplyVector(vy);
|
|
vz = worldToView.MultiplyVector(vz);
|
|
|
|
var Cw = worldToView.MultiplyPoint(C);
|
|
|
|
if (boxProj) lgtData.flags |= LightDefinitions.IS_BOX_PROJECTED;
|
|
|
|
lgtData.lightPos = Cw;
|
|
lgtData.lightAxisX = vx;
|
|
lgtData.lightAxisY = vy;
|
|
lgtData.lightAxisZ = vz;
|
|
lgtData.localCubeCapturePoint = -boxOffset;
|
|
lgtData.probeBlendDistance = blendDistance;
|
|
|
|
lgtData.lightIntensity = decodeVals.x;
|
|
lgtData.decodeExp = decodeVals.y;
|
|
|
|
lgtData.sliceIndex = m_CubeReflTexArray.FetchSlice(cubemap);
|
|
|
|
var delta = combinedExtent - e;
|
|
lgtData.boxInnerDist = e;
|
|
lgtData.boxInvRange.Set(1.0f / delta.x, 1.0f / delta.y, 1.0f / delta.z);
|
|
|
|
bndData.center = Cw;
|
|
bndData.boxAxisX = combinedExtent.x * vx;
|
|
bndData.boxAxisY = combinedExtent.y * vy;
|
|
bndData.boxAxisZ = combinedExtent.z * vz;
|
|
bndData.scaleXY.Set(1.0f, 1.0f);
|
|
bndData.radius = combinedExtent.magnitude;
|
|
|
|
// fill up ldata
|
|
lgtData.lightType = (uint)LightDefinitions.BOX_LIGHT;
|
|
lgtData.lightModel = (uint)LightDefinitions.REFLECTION_LIGHT;
|
|
|
|
|
|
int i = LightDefinitions.REFLECTION_LIGHT, j = LightDefinitions.BOX_LIGHT;
|
|
idxOut = numEntries2nd[i,j] + offsets[i,j]; ++numEntries2nd[i,j];
|
|
boundData[idxOut] = bndData;
|
|
lightData[idxOut] = lgtData;
|
|
}
|
|
|
|
var numProbesOut = offsets[LightDefinitions.REFLECTION_LIGHT, numVolTypes-1] + numEntries[LightDefinitions.REFLECTION_LIGHT, numVolTypes-1];
|
|
for(var m=0; m<numModels; m++)
|
|
{
|
|
for(var v=0; v<numVolTypes; v++)
|
|
Debug.Assert(numEntries[m,v]==numEntries2nd[m, v], "count mismatch on second pass!");
|
|
}
|
|
|
|
s_ConvexBoundsBuffer.SetData(boundData);
|
|
s_LightDataBuffer.SetData(lightData);
|
|
|
|
|
|
return numLightsOut + numProbesOut;
|
|
}
|
|
|
|
public override void Render(Camera[] cameras, RenderLoop renderLoop)
|
|
{
|
|
foreach (var camera in cameras)
|
|
{
|
|
CullingParameters cullingParams;
|
|
if (!CullResults.GetCullingParameters(camera, out cullingParams))
|
|
continue;
|
|
|
|
m_ShadowPass.UpdateCullingParameters(ref cullingParams);
|
|
|
|
var cullResults = CullResults.Cull(ref cullingParams, renderLoop);
|
|
ExecuteRenderLoop(camera, cullResults, renderLoop);
|
|
}
|
|
|
|
renderLoop.Submit();
|
|
}
|
|
|
|
void FinalPass(RenderLoop loop)
|
|
{
|
|
var cmd = new CommandBuffer { name = "FinalPass" };
|
|
cmd.Blit(s_CameraTarget, BuiltinRenderTextureType.CameraTarget, m_BlitMaterial, 0);
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
}
|
|
|
|
void ExecuteRenderLoop(Camera camera, CullResults cullResults, RenderLoop loop)
|
|
{
|
|
var w = camera.pixelWidth;
|
|
var h = camera.pixelHeight;
|
|
|
|
ResizeIfNecessary(w, h);
|
|
|
|
// do anything we need to do upon a new frame.
|
|
NewFrame ();
|
|
|
|
#pragma warning disable 162 // warning CS0162: Unreachable code detected
|
|
if (!k_UseAsyncCompute) RenderShadowMaps(cullResults, loop);
|
|
#pragma warning restore 162
|
|
// generate g-buffer before shadows to leverage async compute
|
|
// forward opaques just write to depth.
|
|
loop.SetupCameraProperties(camera);
|
|
RenderGBuffer(cullResults, camera, loop);
|
|
DepthOnlyForForwardOpaques(cullResults, camera, loop);
|
|
CopyDepthAfterGBuffer(loop);
|
|
|
|
// camera to screen matrix (and it's inverse)
|
|
var proj = CameraProjection(camera);
|
|
var temp = new Matrix4x4();
|
|
temp.SetRow(0, new Vector4(0.5f * w, 0.0f, 0.0f, 0.5f * w));
|
|
temp.SetRow(1, new Vector4(0.0f, 0.5f * h, 0.0f, 0.5f * h));
|
|
temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f));
|
|
temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
|
|
var projscr = temp * proj;
|
|
var invProjscr = projscr.inverse;
|
|
|
|
|
|
// build per tile light lists
|
|
var numLights = GenerateSourceLightBuffers(camera, cullResults);
|
|
BuildPerTileLightLists(camera, loop, numLights, projscr, invProjscr);
|
|
|
|
// render shadow maps (for mobile shadow map rendering should happen before we render g-buffer).
|
|
// on GCN it needs to be after to leverage async compute since we need the depth-buffer for optimal light list building.
|
|
if(k_UseAsyncCompute) RenderShadowMaps(cullResults, loop);
|
|
|
|
// Push all global params
|
|
var numDirLights = UpdateDirectionalLights(camera, cullResults.visibleLights);
|
|
PushGlobalParams(camera, loop, CameraToWorld(camera), projscr, invProjscr, numDirLights);
|
|
|
|
// do deferred lighting
|
|
DoTiledDeferredLighting(camera, loop, numLights, numDirLights);
|
|
|
|
// render opaques using tiled forward
|
|
RenderForward(cullResults, camera, loop, true); // opaques only (requires a depth pre-pass)
|
|
|
|
// render the backdrop/canvas
|
|
m_SkyboxHelper.Draw(loop, camera);
|
|
|
|
// transparencies atm. requires clustered until we get traditional forward
|
|
if(enableClustered) RenderForward(cullResults, camera, loop, false);
|
|
|
|
// debug views.
|
|
if (enableDrawLightBoundsDebug) DrawLightBoundsDebug(loop, cullResults.visibleLights.Length);
|
|
|
|
// present frame buffer.
|
|
FinalPass(loop);
|
|
|
|
// bind depth surface for editor grid/gizmo/selection rendering
|
|
if (camera.cameraType == CameraType.SceneView)
|
|
{
|
|
var cmd = new CommandBuffer();
|
|
cmd.SetRenderTarget(BuiltinRenderTextureType.CameraTarget, new RenderTargetIdentifier(s_CameraDepthTexture));
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
}
|
|
loop.Submit();
|
|
|
|
}
|
|
|
|
void DrawLightBoundsDebug(RenderLoop loop, int numLights)
|
|
{
|
|
var cmd = new CommandBuffer { name = "DrawLightBoundsDebug" };
|
|
m_DebugLightBoundsMaterial.SetBuffer("g_data", s_ConvexBoundsBuffer);
|
|
cmd.DrawProcedural(Matrix4x4.identity, m_DebugLightBoundsMaterial, 0, MeshTopology.Triangles, 12 * 3 * numLights);
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
}
|
|
|
|
void NewFrame()
|
|
{
|
|
// update texture caches
|
|
m_CookieTexArray.NewFrame();
|
|
m_CubeCookieTexArray.NewFrame();
|
|
m_CubeReflTexArray.NewFrame();
|
|
}
|
|
|
|
void RenderShadowMaps(CullResults cullResults, RenderLoop loop)
|
|
{
|
|
ShadowOutput shadows;
|
|
m_ShadowPass.Render(loop, cullResults, out shadows);
|
|
UpdateShadowConstants (cullResults.visibleLights, ref shadows);
|
|
}
|
|
|
|
void ResizeIfNecessary(int curWidth, int curHeight)
|
|
{
|
|
if (curWidth != s_WidthOnRecord || curHeight != s_HeightOnRecord || s_LightList == null ||
|
|
(s_BigTileLightList==null && enableBigTilePrepass) || (s_PerVoxelLightLists==null && enableClustered) )
|
|
{
|
|
if (s_WidthOnRecord > 0 && s_HeightOnRecord > 0)
|
|
ReleaseResolutionDependentBuffers();
|
|
|
|
AllocResolutionDependentBuffers(curWidth, curHeight);
|
|
|
|
// update recorded window resolution
|
|
s_WidthOnRecord = curWidth;
|
|
s_HeightOnRecord = curHeight;
|
|
}
|
|
}
|
|
|
|
void ReleaseResolutionDependentBuffers()
|
|
{
|
|
if (s_LightList != null)
|
|
s_LightList.Release();
|
|
|
|
if (enableClustered)
|
|
{
|
|
if (s_PerVoxelLightLists != null)
|
|
s_PerVoxelLightLists.Release();
|
|
|
|
if (s_PerVoxelOffset != null)
|
|
s_PerVoxelOffset.Release();
|
|
|
|
if (k_UseDepthBuffer && s_PerTileLogBaseTweak != null)
|
|
s_PerTileLogBaseTweak.Release();
|
|
}
|
|
|
|
if(enableBigTilePrepass)
|
|
{
|
|
if(s_BigTileLightList!=null) s_BigTileLightList.Release();
|
|
}
|
|
}
|
|
|
|
int NumLightIndicesPerClusteredTile()
|
|
{
|
|
return 8 * (1 << k_Log2NumClusters); // total footprint for all layers of the tile (measured in light index entries)
|
|
}
|
|
|
|
void AllocResolutionDependentBuffers(int width, int height)
|
|
{
|
|
var nrTilesX = (width + 15) / 16;
|
|
var nrTilesY = (height + 15) / 16;
|
|
var nrTiles = nrTilesX * nrTilesY;
|
|
const int capacityUShortsPerTile = 32;
|
|
const int dwordsPerTile = (capacityUShortsPerTile + 1) >> 1; // room for 31 lights and a nrLights value.
|
|
|
|
s_LightList = new ComputeBuffer(LightDefinitions.NR_LIGHT_MODELS * dwordsPerTile * nrTiles, sizeof(uint)); // enough list memory for a 4k x 4k display
|
|
|
|
if (enableClustered)
|
|
{
|
|
s_PerVoxelOffset = new ComputeBuffer(LightDefinitions.NR_LIGHT_MODELS * (1 << k_Log2NumClusters) * nrTiles, sizeof(uint));
|
|
s_PerVoxelLightLists = new ComputeBuffer(NumLightIndicesPerClusteredTile() * nrTiles, sizeof(uint));
|
|
|
|
if (k_UseDepthBuffer)
|
|
{
|
|
s_PerTileLogBaseTweak = new ComputeBuffer(nrTiles, sizeof(float));
|
|
}
|
|
}
|
|
|
|
if(enableBigTilePrepass)
|
|
{
|
|
var nrBigTilesX = (width + 63) / 64;
|
|
var nrBigTilesY = (height + 63) / 64;
|
|
var nrBigTiles = nrBigTilesX * nrBigTilesY;
|
|
s_BigTileLightList = new ComputeBuffer(LightDefinitions.MAX_NR_BIGTILE_LIGHTS_PLUSONE * nrBigTiles, sizeof(uint));
|
|
}
|
|
}
|
|
|
|
void VoxelLightListGeneration(CommandBuffer cmd, Camera camera, int numLights, Matrix4x4 projscr, Matrix4x4 invProjscr)
|
|
{
|
|
// clear atomic offset index
|
|
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_ClearVoxelAtomicKernel, "g_LayeredSingleIdxBuffer", s_GlobalLightListAtomic);
|
|
cmd.DispatchCompute(buildPerVoxelLightListShader, s_ClearVoxelAtomicKernel, 1, 1, 1);
|
|
|
|
cmd.SetComputeIntParam(buildPerVoxelLightListShader, "g_iNrVisibLights", numLights);
|
|
SetMatrixCS(cmd, buildPerVoxelLightListShader, "g_mScrProjection", projscr);
|
|
SetMatrixCS(cmd, buildPerVoxelLightListShader, "g_mInvScrProjection", invProjscr);
|
|
|
|
cmd.SetComputeIntParam(buildPerVoxelLightListShader, "g_iLog2NumClusters", k_Log2NumClusters);
|
|
|
|
//Vector4 v2_near = invProjscr * new Vector4(0.0f, 0.0f, 0.0f, 1.0f);
|
|
//Vector4 v2_far = invProjscr * new Vector4(0.0f, 0.0f, 1.0f, 1.0f);
|
|
//float nearPlane2 = -(v2_near.z/v2_near.w);
|
|
//float farPlane2 = -(v2_far.z/v2_far.w);
|
|
var nearPlane = camera.nearClipPlane;
|
|
var farPlane = camera.farClipPlane;
|
|
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, "g_fNearPlane", nearPlane);
|
|
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, "g_fFarPlane", farPlane);
|
|
|
|
const float C = (float)(1 << k_Log2NumClusters);
|
|
var geomSeries = (1.0 - Mathf.Pow(k_ClustLogBase, C)) / (1 - k_ClustLogBase); // geometric series: sum_k=0^{C-1} base^k
|
|
m_ClustScale = (float)(geomSeries / (farPlane - nearPlane));
|
|
|
|
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, "g_fClustScale", m_ClustScale);
|
|
cmd.SetComputeFloatParam(buildPerVoxelLightListShader, "g_fClustBase", k_ClustLogBase);
|
|
|
|
cmd.SetComputeTextureParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, "g_depth_tex", new RenderTargetIdentifier(s_CameraDepthTexture));
|
|
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, "g_vLayeredLightList", s_PerVoxelLightLists);
|
|
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, "g_LayeredOffset", s_PerVoxelOffset);
|
|
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, "g_LayeredSingleIdxBuffer", s_GlobalLightListAtomic);
|
|
if (enableBigTilePrepass) cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, "g_vBigTileLightList", s_BigTileLightList);
|
|
|
|
if (k_UseDepthBuffer)
|
|
{
|
|
cmd.SetComputeBufferParam(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, "g_logBaseBuffer", s_PerTileLogBaseTweak);
|
|
}
|
|
|
|
var numTilesX = (camera.pixelWidth + 15) / 16;
|
|
var numTilesY = (camera.pixelHeight + 15) / 16;
|
|
cmd.DispatchCompute(buildPerVoxelLightListShader, s_GenListPerVoxelKernel, numTilesX, numTilesY, 1);
|
|
}
|
|
|
|
void BuildPerTileLightLists(Camera camera, RenderLoop loop, int numLights, Matrix4x4 projscr, Matrix4x4 invProjscr)
|
|
{
|
|
var w = camera.pixelWidth;
|
|
var h = camera.pixelHeight;
|
|
var numTilesX = (w + 15) / 16;
|
|
var numTilesY = (h + 15) / 16;
|
|
var numBigTilesX = (w + 63) / 64;
|
|
var numBigTilesY = (h + 63) / 64;
|
|
|
|
var cmd = new CommandBuffer() { name = "Build light list" };
|
|
|
|
// generate screen-space AABBs (used for both fptl and clustered).
|
|
{
|
|
var proj = CameraProjection(camera);
|
|
var temp = new Matrix4x4();
|
|
temp.SetRow(0, new Vector4(1.0f, 0.0f, 0.0f, 0.0f));
|
|
temp.SetRow(1, new Vector4(0.0f, 1.0f, 0.0f, 0.0f));
|
|
temp.SetRow(2, new Vector4(0.0f, 0.0f, 0.5f, 0.5f));
|
|
temp.SetRow(3, new Vector4(0.0f, 0.0f, 0.0f, 1.0f));
|
|
var projh = temp * proj;
|
|
var invProjh = projh.inverse;
|
|
|
|
cmd.SetComputeIntParam(buildScreenAABBShader, "g_iNrVisibLights", numLights);
|
|
SetMatrixCS(cmd, buildScreenAABBShader, "g_mProjection", projh);
|
|
SetMatrixCS(cmd, buildScreenAABBShader, "g_mInvProjection", invProjh);
|
|
cmd.SetComputeBufferParam(buildScreenAABBShader, s_GenAABBKernel, "g_vBoundsBuffer", s_AABBBoundsBuffer);
|
|
cmd.DispatchCompute(buildScreenAABBShader, s_GenAABBKernel, (numLights + 7) / 8, 1, 1);
|
|
}
|
|
|
|
// enable coarse 2D pass on 64x64 tiles (used for both fptl and clustered).
|
|
if(enableBigTilePrepass)
|
|
{
|
|
cmd.SetComputeIntParams(buildPerBigTileLightListShader, "g_viDimensions", new int[2] { w, h });
|
|
cmd.SetComputeIntParam(buildPerBigTileLightListShader, "g_iNrVisibLights", numLights);
|
|
SetMatrixCS(cmd, buildPerBigTileLightListShader, "g_mScrProjection", projscr);
|
|
SetMatrixCS(cmd, buildPerBigTileLightListShader, "g_mInvScrProjection", invProjscr);
|
|
cmd.SetComputeFloatParam(buildPerBigTileLightListShader, "g_fNearPlane", camera.nearClipPlane);
|
|
cmd.SetComputeFloatParam(buildPerBigTileLightListShader, "g_fFarPlane", camera.farClipPlane);
|
|
cmd.SetComputeBufferParam(buildPerBigTileLightListShader, s_GenListPerBigTileKernel, "g_vLightList", s_BigTileLightList);
|
|
cmd.DispatchCompute(buildPerBigTileLightListShader, s_GenListPerBigTileKernel, numBigTilesX, numBigTilesY, 1);
|
|
}
|
|
|
|
if( usingFptl ) // optimized for opaques only
|
|
{
|
|
cmd.SetComputeIntParams(buildPerTileLightListShader, "g_viDimensions", new int[2] { w, h });
|
|
cmd.SetComputeIntParam(buildPerTileLightListShader, "g_iNrVisibLights", numLights);
|
|
SetMatrixCS(cmd, buildPerTileLightListShader, "g_mScrProjection", projscr);
|
|
SetMatrixCS(cmd, buildPerTileLightListShader, "g_mInvScrProjection", invProjscr);
|
|
cmd.SetComputeTextureParam(buildPerTileLightListShader, s_GenListPerTileKernel, "g_depth_tex", new RenderTargetIdentifier(s_CameraDepthTexture));
|
|
cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, "g_vLightList", s_LightList);
|
|
if(enableBigTilePrepass) cmd.SetComputeBufferParam(buildPerTileLightListShader, s_GenListPerTileKernel, "g_vBigTileLightList", s_BigTileLightList);
|
|
cmd.DispatchCompute(buildPerTileLightListShader, s_GenListPerTileKernel, numTilesX, numTilesY, 1);
|
|
}
|
|
|
|
if (enableClustered) // works for transparencies too.
|
|
{
|
|
VoxelLightListGeneration(cmd, camera, numLights, projscr, invProjscr);
|
|
}
|
|
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
}
|
|
|
|
void PushGlobalParams(Camera camera, RenderLoop loop, Matrix4x4 viewToWorld, Matrix4x4 scrProj, Matrix4x4 incScrProj, int numDirLights)
|
|
{
|
|
var cmd = new CommandBuffer { name = "Push Global Parameters" };
|
|
|
|
cmd.SetGlobalFloat("g_widthRT", (float)camera.pixelWidth);
|
|
cmd.SetGlobalFloat("g_heightRT", (float)camera.pixelHeight);
|
|
|
|
cmd.SetGlobalMatrix("g_mViewToWorld", viewToWorld);
|
|
cmd.SetGlobalMatrix("g_mWorldToView", viewToWorld.inverse);
|
|
cmd.SetGlobalMatrix("g_mScrProjection", scrProj);
|
|
cmd.SetGlobalMatrix("g_mInvScrProjection", incScrProj);
|
|
|
|
cmd.SetGlobalBuffer("g_vLightData", s_LightDataBuffer);
|
|
|
|
cmd.SetGlobalTexture("_spotCookieTextures", m_CookieTexArray.GetTexCache());
|
|
cmd.SetGlobalTexture("_pointCookieTextures", m_CubeCookieTexArray.GetTexCache());
|
|
cmd.SetGlobalTexture("_reflCubeTextures", m_CubeReflTexArray.GetTexCache());
|
|
|
|
var topCube = ReflectionProbe.defaultTexture;
|
|
var defdecode = ReflectionProbe.defaultTextureHDRDecodeValues;
|
|
cmd.SetGlobalTexture("_reflRootCubeTexture", topCube);
|
|
cmd.SetGlobalFloat("_reflRootHdrDecodeMult", defdecode.x);
|
|
cmd.SetGlobalFloat("_reflRootHdrDecodeExp", defdecode.y);
|
|
|
|
if(enableBigTilePrepass)
|
|
cmd.SetGlobalBuffer("g_vBigTileLightList", s_BigTileLightList);
|
|
|
|
if (enableClustered)
|
|
{
|
|
cmd.SetGlobalFloat("g_fClustScale", m_ClustScale);
|
|
cmd.SetGlobalFloat("g_fClustBase", k_ClustLogBase);
|
|
cmd.SetGlobalFloat("g_fNearPlane", camera.nearClipPlane);
|
|
cmd.SetGlobalFloat("g_fFarPlane", camera.farClipPlane);
|
|
cmd.SetGlobalFloat("g_iLog2NumClusters", k_Log2NumClusters);
|
|
|
|
|
|
cmd.SetGlobalFloat("g_isLogBaseBufferEnabled", k_UseDepthBuffer ? 1 : 0);
|
|
|
|
cmd.SetGlobalBuffer("g_vLayeredOffsetsBuffer", s_PerVoxelOffset);
|
|
if (k_UseDepthBuffer)
|
|
{
|
|
cmd.SetGlobalBuffer("g_logBaseBuffer", s_PerTileLogBaseTweak);
|
|
}
|
|
}
|
|
|
|
cmd.SetGlobalFloat("g_nNumDirLights", numDirLights);
|
|
cmd.SetGlobalBuffer("g_dirLightData", s_DirLightList);
|
|
|
|
// Shadow constants
|
|
cmd.SetGlobalMatrixArray("g_matWorldToShadow", m_MatWorldToShadow);
|
|
cmd.SetGlobalVectorArray("g_vDirShadowSplitSpheres", m_DirShadowSplitSpheres);
|
|
cmd.SetGlobalVector("g_vShadow3x3PCFTerms0", m_Shadow3X3PCFTerms[0]);
|
|
cmd.SetGlobalVector("g_vShadow3x3PCFTerms1", m_Shadow3X3PCFTerms[1]);
|
|
cmd.SetGlobalVector("g_vShadow3x3PCFTerms2", m_Shadow3X3PCFTerms[2]);
|
|
cmd.SetGlobalVector("g_vShadow3x3PCFTerms3", m_Shadow3X3PCFTerms[3]);
|
|
|
|
loop.ExecuteCommandBuffer(cmd);
|
|
cmd.Dispose();
|
|
}
|
|
|
|
private float PerceptualRoughnessToBlinnPhongPower(float perceptualRoughness)
|
|
{
|
|
#pragma warning disable 162 // warning CS0162: Unreachable code detected
|
|
// There is two code here, by default the code corresponding for UNITY_GLOSS_MATCHES_MARMOSET_TOOLBAG2 was use for cloud reasons
|
|
// The other code (not marmoset) is not matching the shader code for cloud reasons.
|
|
// As none of this solution match BRDF 1 or 2, I let the Marmoset code to avoid to break current test. But ideally, all this should be rewrite to match BRDF1
|
|
if (true)
|
|
{
|
|
// from https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html
|
|
float n = 10.0f / Mathf.Log((1.0f - perceptualRoughness) * 0.968f + 0.03f) / Mathf.Log(2.0f);
|
|
|
|
return n * n;
|
|
}
|
|
else
|
|
{
|
|
// NOTE: another approximate approach to match Marmoset gloss curve is to
|
|
// multiply roughness by 0.7599 in the code below (makes SpecPower range 4..N instead of 1..N)
|
|
const float UNITY_SPECCUBE_LOD_EXPONENT = 1.5f;
|
|
|
|
float m = Mathf.Pow(perceptualRoughness, 2.0f * UNITY_SPECCUBE_LOD_EXPONENT) + 1e-4f;
|
|
// follow the same curve as unity_SpecCube
|
|
float n = (2.0f / m) - 2.0f; // https://dl.dropbox.com/u/55891920/papers/mm_brdf.pdf
|
|
n = Mathf.Max(n, 1.0e-5f); // prevent possible cases of pow(0,0), which could happen when roughness is 1.0 and NdotH is zero
|
|
|
|
return n;
|
|
}
|
|
#pragma warning restore 162
|
|
}
|
|
private float PerceptualRoughnessToPhongPower(float perceptualRoughness)
|
|
{
|
|
return PerceptualRoughnessToBlinnPhongPower(perceptualRoughness) * 0.25f;
|
|
}
|
|
|
|
private float PhongNormalizedTerm(float NdotH, float n)
|
|
{
|
|
// Normalization for Phong when used as RDF (outside a micro-facet model)
|
|
// http://www.thetenthplanet.de/archives/255
|
|
float normTerm = (n + 2.0f) / (2.0f * Mathf.PI);
|
|
float specTerm = Mathf.Pow(NdotH, n);
|
|
return specTerm * normTerm;
|
|
}
|
|
|
|
private float EvalNHxRoughness(int x, int y, int maxX, int maxY)
|
|
{
|
|
// both R.L or N.H (cosine) are not linear and approach 1.0 very quickly
|
|
// since we want more resolution closer to where highlight is (close to 1)
|
|
// we warp LUT across horizontal axis
|
|
// NOTE: warp function ^4 or ^5 can be executed in the same instruction as Shlick fresnel approximation (handy for SM2.0 platforms with <=64 instr. limit)
|
|
const float kHorizontalWarpExp = 4.0f;
|
|
float rdotl = Mathf.Pow(((float)x) / ((float)maxX - 1.0f), 1.0f / kHorizontalWarpExp);
|
|
float perceptualRoughness = ((float)y) / ((float)maxY - .5f);
|
|
float specTerm = PhongNormalizedTerm(rdotl, PerceptualRoughnessToPhongPower(perceptualRoughness));
|
|
|
|
// Lookup table values are evaluated in Linear space
|
|
// but converted and stored as sRGB to support low-end platforms
|
|
|
|
float range = Mathf.GammaToLinearSpace(16.0f);
|
|
float val = Mathf.Clamp01(specTerm / range); // store in sRGB range of [0..16]
|
|
// OKish range to 'counteract' multiplication by N.L (as in BRDF*N.L)
|
|
// while retaining bright specular spot at both grazing and incident angles
|
|
// and allows some precision in case if AlphaLum16 is not supported
|
|
val = Mathf.LinearToGammaSpace(val);
|
|
|
|
// As there is not enough resolution in LUT for tiny highlights,
|
|
// fadeout intensity of the highlight when roughness approaches 0 and N.H approaches 1
|
|
// Prevents from overly big bright highlight on mirror surfaces
|
|
const float fadeOutPerceptualRoughness = .05f;
|
|
bool lastHorizontalPixel = (x >= maxX - 1); // highlights are on the right-side of LUT
|
|
if (perceptualRoughness <= fadeOutPerceptualRoughness && lastHorizontalPixel)
|
|
val *= perceptualRoughness / fadeOutPerceptualRoughness;
|
|
return val;
|
|
}
|
|
|
|
|
|
private Texture2D GenerateRoughnessTexture()
|
|
{
|
|
const int width = 256;
|
|
const int height = 64;
|
|
|
|
Texture2D texture = new Texture2D(width, height, TextureFormat.RGBA32, false, true); //TODO: no alpha16 support?
|
|
Color[] pixels = new Color[height*width];
|
|
|
|
for (int y = 0; y < height; y++)
|
|
{
|
|
for (int x = 0; x < width; x++)
|
|
{
|
|
float value = EvalNHxRoughness(x, y, width, height);
|
|
pixels[y * width + x] = new Color(value, value, value, value); //TODO: set them in one go
|
|
}
|
|
}
|
|
|
|
texture.SetPixels(pixels);
|
|
texture.wrapMode = TextureWrapMode.Clamp;
|
|
texture.Apply();
|
|
return texture;
|
|
}
|
|
|
|
private const float kConstantFac = 1.000f;
|
|
private const float kQuadraticFac = 25.0f;
|
|
private const float kToZeroFadeStart = 0.8f * 0.8f;
|
|
|
|
private float CalculateLightQuadFac(float range)
|
|
{
|
|
return kQuadraticFac / (range * range);
|
|
}
|
|
|
|
private float LightAttenuateNormalized(float distSqr)
|
|
{
|
|
// match the vertex lighting falloff
|
|
float atten = 1 / (kConstantFac + CalculateLightQuadFac(1.0f) * distSqr);
|
|
|
|
// ...but vertex one does not falloff to zero at light's range;
|
|
// So force it to falloff to zero at the edges.
|
|
if (distSqr >= kToZeroFadeStart)
|
|
{
|
|
if (distSqr > 1)
|
|
atten = 0;
|
|
else
|
|
atten *= 1 - (distSqr - kToZeroFadeStart) / (1 - kToZeroFadeStart);
|
|
}
|
|
|
|
return atten;
|
|
}
|
|
|
|
private float EvalLightAttenuation(int x, int maxX)
|
|
{
|
|
float sqrRange = (float)x / (float)maxX;
|
|
return LightAttenuateNormalized(sqrRange);
|
|
}
|
|
|
|
private Texture2D GenerateLightAttenuationTexture()
|
|
{
|
|
const int width = 1024;
|
|
|
|
Texture2D texture = new Texture2D(width, 1, TextureFormat.RGBA32, false, true); //TODO: no alpha16 support?
|
|
Color[] pixels = new Color[width];
|
|
|
|
for (int x = 0; x < width; x++)
|
|
{
|
|
float value = EvalLightAttenuation(x, width);
|
|
pixels[x] = new Color(value, value, value, value);
|
|
}
|
|
|
|
texture.SetPixels(pixels);
|
|
texture.wrapMode = TextureWrapMode.Clamp;
|
|
texture.Apply();
|
|
return texture;
|
|
}
|
|
|
|
|
|
}
|
|
}
|