您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

534 行
20 KiB

#ifndef UNITY_IMAGE_BASED_LIGHTING_INCLUDED
#define UNITY_IMAGE_BASED_LIGHTING_INCLUDED
#include "CommonLighting.hlsl"
#include "CommonMaterial.hlsl"
#include "BSDF.hlsl"
#include "Sampling.hlsl"
// TODO: We need to change this hard limit!
#ifndef UNITY_SPECCUBE_LOD_STEPS
#define UNITY_SPECCUBE_LOD_STEPS 6
#endif
//-----------------------------------------------------------------------------
// Util image based lighting
//-----------------------------------------------------------------------------
float perceptualRoughnessToMipmapLevel(float perceptualRoughness)
{
// TODO: Clean a bit this code
// CAUTION: remap from Morten may work only with offline convolution, see impact with runtime convolution!
// For now disabled
#if 0
float m = PerceptualRoughnessToRoughness(perceptualRoughness); // m is the real roughness parameter
float n = (2.0 / max(FLT_EPSILON, m*m)) - 2.0; // remap to spec power. See eq. 21 in --> https://dl.dropboxusercontent.com/u/55891920/papers/mm_brdf.pdf
n /= 4.0; // remap from n_dot_h formulatino to n_dot_r. See section "Pre-convolved Cube Maps vs Path Tracers" --> https://s3.amazonaws.com/docs.knaldtech.com/knald/1.0.0/lys_power_drops.html
perceptualRoughness = pow(2.0 / (n + 2.0), 0.25); // remap back to square root of real roughness (0.25 include both the sqrt root of the conversion and sqrt for going from roughness to perceptualRoughness)
#else
// MM: came up with a surprisingly close approximation to what the #if 0'ed out code above does.
perceptualRoughness = perceptualRoughness * (1.7 - 0.7 * perceptualRoughness);
#endif
return perceptualRoughness * UNITY_SPECCUBE_LOD_STEPS;
}
float mipmapLevelToPerceptualRoughness(float mipmapLevel)
{
return saturate(mipmapLevel / UNITY_SPECCUBE_LOD_STEPS);
}
//-----------------------------------------------------------------------------
// Coordinate system conversion
//-----------------------------------------------------------------------------
// Transforms the unit vector from the spherical to the Cartesian (right-handed, Z up) coordinate.
float3 SphericalToCartesian(float phi, float sinTheta, float cosTheta)
{
float sinPhi, cosPhi;
sincos(phi, sinPhi, cosPhi);
return float3(sinTheta * cosPhi, sinTheta * sinPhi, cosTheta);
}
// Converts Cartesian coordinates given in the right-handed coordinate system
// with Z pointing upwards (OpenGL style) to the coordinates in the left-handed
// coordinate system with Y pointing up and Z facing forward (DirectX style).
float3 TransformGLtoDX(float x, float y, float z)
{
return float3(x, z, y);
}
float3 TransformGLtoDX(float3 v)
{
return v.xzy;
}
// Performs conversion from equiareal map coordinates to Cartesian (DirectX cubemap) ones.
float3 ConvertEquiarealToCubemap(float u, float v)
{
// The equiareal mapping is defined as follows:
// phi = TWO_PI * (1.0 - u)
// cos(theta) = 1.0 - 2.0 * v
// sin(theta) = sqrt(1.0 - cos^2(theta)) = 2.0 * sqrt(v - v * v)
float phi = TWO_PI - TWO_PI * u;
float cosTheta = 1.0 - 2.0 * v;
float sinTheta = 2.0 * sqrt(v - v * v);
return TransformGLtoDX(SphericalToCartesian(phi, sinTheta, cosTheta));
}
// Ref: See "Moving Frostbite to PBR" Listing 22
// This formulation is for GGX only (with smith joint visibility or regular)
float3 GetSpecularDominantDir(float3 N, float3 R, float roughness)
{
float a = 1.0 - roughness;
float lerpFactor = a * (sqrt(a) + roughness);
// The result is not normalized as we fetch in a cubemap
return lerp(N, R, lerpFactor);
}
//-----------------------------------------------------------------------------
// Anisotropic image based lighting
//-----------------------------------------------------------------------------
// To simulate the streching of highlight at grazing angle for IBL we shrink the roughness
// which allow to fake an anisotropic specular lobe.
// Ref: http://www.frostbite.com/2015/08/stochastic-screen-space-reflections/ - slide 84
float AnisotropicStrechAtGrazingAngle(float roughness, float perceptualRoughness, float NdotV)
{
return roughness * lerp(saturate(NdotV * 2.0), 1.0, perceptualRoughness);
}
// ----------------------------------------------------------------------------
// Importance sampling BSDF functions
// ----------------------------------------------------------------------------
void ImportanceSampleCosDir(float2 u,
float3x3 localToWorld,
out float3 L,
out float NdotL)
{
// Cosine sampling - ref: http://www.rorydriscoll.com/2009/01/07/better-sampling/
float cosTheta = sqrt(1.0 - u.x);
float sinTheta = sqrt(u.x);
float phi = TWO_PI * u.y;
float3 localL = SphericalToCartesian(phi, sinTheta, cosTheta);
NdotL = localL.z;
L = mul(localL, localToWorld);
}
void ImportanceSampleGGXDir(float2 u,
float3 V,
float3x3 localToWorld,
float roughness,
out float3 L,
out float NdotL,
out float NdotH,
out float VdotH,
bool VeqN = false)
{
// GGX NDF sampling
float cosTheta = sqrt((1.0 - u.x) / (1.0 + (roughness * roughness - 1.0) * u.x));
float sinTheta = sqrt(1.0 - cosTheta * cosTheta);
float phi = TWO_PI * u.y;
float3 localH = SphericalToCartesian(phi, sinTheta, cosTheta);
NdotH = cosTheta;
float3 localV;
if (VeqN)
{
// localV == localN
localV = float3(0.0, 0.0, 1.0);
VdotH = NdotH;
}
else
{
localV = mul(V, transpose(localToWorld));
VdotH = saturate(dot(localV, localH));
}
// Compute { localL = reflect(-localV, localH) }
float3 localL = -localV + 2.0 * VdotH * localH;
NdotL = localL.z;
L = mul(localL, localToWorld);
}
// ref: http://blog.selfshadow.com/publications/s2012-shading-course/burley/s2012_pbs_disney_brdf_notes_v3.pdf p26
void ImportanceSampleAnisoGGXDir( float2 u,
float3 V,
float3 N,
float3 tangentX,
float3 tangentY,
float roughnessT,
float roughnessB,
out float3 H,
out float3 L)
{
// AnisoGGX NDF sampling
H = sqrt(u.x / (1.0 - u.x)) * (roughnessT * cos(TWO_PI * u.y) * tangentX + roughnessB * sin(TWO_PI * u.y) * tangentY) + N;
H = normalize(H);
// Local to world
// H = tangentX * H.x + tangentY * H.y + N * H.z;
// Convert sample from half angle to incident angle
L = 2.0 * saturate(dot(V, H)) * H - V;
}
// weightOverPdf return the weight (without the diffuseAlbedo term) over pdf. diffuseAlbedo term must be apply by the caller.
void ImportanceSampleLambert(float2 u,
float3x3 localToWorld,
out float3 L,
out float NdotL,
out float weightOverPdf)
{
ImportanceSampleCosDir(u, localToWorld, L, NdotL);
// Importance sampling weight for each sample
// pdf = N.L / PI
// weight = fr * (N.L) with fr = diffuseAlbedo / PI
// weight over pdf is:
// weightOverPdf = (diffuseAlbedo / PI) * (N.L) / (N.L / PI)
// weightOverPdf = diffuseAlbedo
// diffuseAlbedo is apply outside the function
weightOverPdf = 1.0;
}
// weightOverPdf return the weight (without the Fresnel term) over pdf. Fresnel term must be apply by the caller.
void ImportanceSampleGGX(float2 u,
float3 V,
float3x3 localToWorld,
float roughness,
float NdotV,
out float3 L,
out float VdotH,
out float NdotL,
out float weightOverPdf)
{
float NdotH;
ImportanceSampleGGXDir(u, V, localToWorld, roughness, L, NdotL, NdotH, VdotH);
// Importance sampling weight for each sample
// pdf = D(H) * (N.H) / (4 * (L.H))
// weight = fr * (N.L) with fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V))
// weight over pdf is:
// weightOverPdf = F(H) * G(V, L) * (L.H) / ((N.H) * (N.V))
// weightOverPdf = F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) with V(V, L) = G(V, L) / (4 * (N.L) * (N.V))
// Remind (L.H) == (V.H)
// F is apply outside the function
float Vis = V_SmithJointGGX(NdotL, NdotV, roughness);
weightOverPdf = 4.0 * Vis * NdotL * VdotH / NdotH;
}
// weightOverPdf return the weight (without the Fresnel term) over pdf. Fresnel term must be apply by the caller.
void ImportanceSampleAnisoGGX(
float2 u,
float3 V,
float3 N,
float3 tangentX,
float3 tangentY,
float roughnessT,
float roughnessB,
float NdotV,
out float3 L,
out float VdotH,
out float NdotL,
out float weightOverPdf)
{
float3 H;
ImportanceSampleAnisoGGXDir(u, V, N, tangentX, tangentY, roughnessT, roughnessB, H, L);
float NdotH = saturate(dot(N, H));
// Note: since L and V are symmetric around H, LdotH == VdotH
VdotH = saturate(dot(V, H));
NdotL = saturate(dot(N, L));
// Importance sampling weight for each sample
// pdf = D(H) * (N.H) / (4 * (L.H))
// weight = fr * (N.L) with fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V))
// weight over pdf is:
// weightOverPdf = F(H) * G(V, L) * (L.H) / ((N.H) * (N.V))
// weightOverPdf = F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) with V(V, L) = G(V, L) / (4 * (N.L) * (N.V))
// Remind (L.H) == (V.H)
// F is apply outside the function
// For anisotropy we must not saturate these values
float TdotV = dot(tangentX, V);
float BdotV = dot(tangentY, V);
float TdotL = dot(tangentX, L);
float BdotL = dot(tangentY, L);
float Vis = V_SmithJointGGXAniso(TdotV, BdotV, NdotV, TdotL, BdotL, NdotL, roughnessT, roughnessB);
weightOverPdf = 4.0 * Vis * NdotL * VdotH / NdotH;
}
// ----------------------------------------------------------------------------
// Pre-integration
// ----------------------------------------------------------------------------
// Ref: Listing 18 in "Moving Frostbite to PBR" + https://knarkowicz.wordpress.com/2014/12/27/analytical-dfg-term-for-ibl/
float4 IntegrateGGXAndDisneyFGD(float3 V, float3 N, float roughness, uint sampleCount)
{
float NdotV = saturate(dot(N, V));
float4 acc = float4(0.0, 0.0, 0.0, 0.0);
// Add some jittering on Hammersley2d
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
float3x3 localToWorld = GetLocalFrame(N);
for (uint i = 0; i < sampleCount; ++i)
{
float2 u = frac(randNum + Hammersley2d(i, sampleCount));
float VdotH;
float NdotL;
float weightOverPdf;
float3 L; // Unused
ImportanceSampleGGX(u, V, localToWorld, roughness, NdotV,
L, VdotH, NdotL, weightOverPdf);
if (NdotL > 0.0)
{
// Integral is
// 1 / NumSample * \int[ L * fr * (N.L) / pdf ] with pdf = D(H) * (N.H) / (4 * (L.H)) and fr = F(H) * G(V, L) * D(H) / (4 * (N.L) * (N.V))
// This is split in two part:
// A) \int[ L * (N.L) ]
// B) \int[ F(H) * 4 * (N.L) * V(V, L) * (L.H) / (N.H) ] with V(V, L) = G(V, L) / (4 * (N.L) * (N.V))
// = \int[ F(H) * weightOverPdf ]
// Recombine at runtime with: ( f0 * weightOverPdf * (1 - Fc) + f90 * weightOverPdf * Fc ) with Fc =(1 - V.H)^5
float Fc = pow(1.0 - VdotH, 5.0);
acc.x += (1.0 - Fc) * weightOverPdf;
acc.y += Fc * weightOverPdf;
}
// for Disney we still use a Cosine importance sampling, true Disney importance sampling imply a look up table
ImportanceSampleLambert(u, localToWorld, L, NdotL, weightOverPdf);
if (NdotL > 0.0)
{
float3 H = normalize(L + V);
float LdotH = dot(L, H);
float disneyDiffuse = DisneyDiffuse(NdotV, NdotL, LdotH, RoughnessToPerceptualRoughness(roughness));
acc.z += disneyDiffuse * weightOverPdf;
}
}
return acc / sampleCount;
}
// Ref: Listing 19 in "Moving Frostbite to PBR"
float4 IntegrateLD(TEXTURECUBE_ARGS(tex, sampl),
float3 V,
float3 N,
float roughness,
float maxMipLevel,
float invOmegaP,
uint sampleCount, // Must be a Fibonacci number
bool prefilter)
{
float3x3 localToWorld = GetLocalFrame(N);
float3 lightInt = float3(0.0, 0.0, 0.0);
float cbsdfInt = 0.0;
for (uint i = 0; i < sampleCount; ++i)
{
float2 u = Fibonacci2d(i, sampleCount);
// Bias samples towards the mirror direction to reduce variance.
// This will have a side effect of making the reflection sharper.
// Ref: Stochastic Screen-Space Reflections, p. 67.
const float bias = 0.2;
u.x = lerp(u.x, 0.0, bias);
float3 L;
float NdotL, NdotH, VdotH;
ImportanceSampleGGXDir(u, V, localToWorld, roughness, L, NdotL, NdotH, VdotH, true);
float mipLevel;
if (!prefilter) // BRDF importance sampling
{
mipLevel = 0;
}
else // Prefiltered BRDF importance sampling
{
// Use lower MIP-map levels for fetching samples with low probabilities
// in order to reduce the variance.
// Ref: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
//
// pdf = D * NdotH * jacobian, where jacobian = 1.0 / (4* LdotH).
//
// Since L and V are symmetric around H, LdotH == VdotH.
// Since we pre-integrate the result for the normal direction,
// N == V and then NdotH == LdotH. Therefore, the BRDF's pdf
// can be simplified:
// pdf = D * NdotH / (4 * LdotH) = D * 0.25;
//
// - OmegaS : Solid angle associated to a sample
// - OmegaP : Solid angle associated to a pixel of the cubemap
float invPdf = D_GGX_Inverse(NdotH, roughness) * 4.0;
// TODO: check the accuracy of the sample's solid angle fit for GGX.
float omegaS = rcp(sampleCount) * invPdf;
// invOmegaP is precomputed on CPU and provide as a parameter of the function
// float omegaP = FOUR_PI / (6.0f * cubemapWidth * cubemapWidth);
mipLevel = 0.5 * log2(omegaS * invOmegaP);
// Bias the MIP map level to compensate for the importance sampling bias.
// This will blur the reflection.
// TODO: find a more accurate MIP bias function.
mipLevel = lerp(mipLevel, maxMipLevel, bias);
}
if (NdotL > 0.0)
{
// TODO: use a Gaussian-like filter to generate the MIP pyramid.
float3 val = SAMPLE_TEXTURECUBE_LOD(tex, sampl, L, mipLevel).rgb;
// *********************************************************************************
// Our goal is to use Monte-Carlo integration with importance sampling to evaluate
// X(V) = Integral{Radiance(L) * CBSDF(L, N, V) dL} / Integral{CBSDF(L, N, V) dL}.
// CBSDF = F * D * G * NdotL / (4 * NdotL * NdotV) = F * D * G / (4 * NdotV).
// PDF = D * NdotH / (4 * LdotH).
// Weight = CBSDF / PDF = F * G * LdotH / (NdotV * NdotH).
// Since we perform filtering with the assumption that (V == N),
// (LdotH == NdotH) && (NdotV == 1) && (Weight == F * G).
// We use the approximation of Brian Karis from "Real Shading in Unreal Engine 4":
// Weight ≈ NdotL, which produces nearly identical results in practice.
// *********************************************************************************
lightInt += NdotL * val;
cbsdfInt += NdotL;
}
}
return float4(lightInt / cbsdfInt, 1.0);
}
// Searches the row 'j' containing 'n' elements of 'haystack' and
// returns the index of the first element greater or equal to 'needle'.
uint BinarySearchRow(uint j, float needle, TEXTURE2D(haystack), uint n)
{
uint i = n - 1;
float v = LOAD_TEXTURE2D(haystack, uint2(i, j)).r;
if (needle < v)
{
i = 0;
for (uint b = 1 << firstbithigh(n - 1); b != 0; b >>= 1)
{
uint p = i | b;
v = LOAD_TEXTURE2D(haystack, uint2(p, j)).r;
if (v <= needle) { i = p; } // Move to the right.
}
}
return i;
}
float4 IntegrateLD_MIS(TEXTURECUBE_ARGS(envMap, sampler_envMap),
TEXTURE2D(marginalRowDensities),
TEXTURE2D(conditionalDensities),
float3 V,
float3 N,
float roughness,
float invOmegaP,
uint width,
uint height,
uint sampleCount,
bool prefilter)
{
float3x3 localToWorld = GetLocalFrame(N);
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
float3 lightInt = float3(0.0, 0.0, 0.0);
float cbsdfInt = 0.0;
/*
// Dedicate 50% of samples to light sampling at 1.0 roughness.
// Only perform BSDF sampling when roughness is below 0.5.
const int lightSampleCount = lerp(0, sampleCount / 2, saturate(2.0 * roughness - 1.0));
const int bsdfSampleCount = sampleCount - lightSampleCount;
*/
// The value of the integral of intensity values of the environment map (as a 2D step function).
float envMapInt2dStep = LOAD_TEXTURE2D(marginalRowDensities, uint2(height, 0)).r;
// Since we are using equiareal mapping, we need to divide by the area of the sphere.
float envMapIntSphere = envMapInt2dStep * INV_FOUR_PI;
// Perform light importance sampling.
for (uint i = 0; i < sampleCount; i++)
{
float2 s = frac(randNum + Hammersley2d(i, sampleCount));
// Sample a row from the marginal distribution.
uint y = BinarySearchRow(0, s.x, marginalRowDensities, height - 1);
// Sample a column from the conditional distribution.
uint x = BinarySearchRow(y, s.y, conditionalDensities, width - 1);
// Compute the coordinates of the sample.
// Note: we take the sample in between two texels, and also apply the half-texel offset.
// We could compute fractional coordinates at the cost of 4 extra texel samples.
float u = saturate((float)x / width + 1.0 / width);
float v = saturate((float)y / height + 1.0 / height);
float3 L = ConvertEquiarealToCubemap(u, v);
float NdotL = saturate(dot(N, L));
if (NdotL > 0.0)
{
float3 val = SAMPLE_TEXTURECUBE_LOD(envMap, sampler_envMap, L, 0).rgb;
float pdf = (val.r + val.g + val.b) / envMapIntSphere;
if (pdf > 0.0)
{
// (N == V) && (acos(VdotL) == 2 * acos(NdotH)).
float NdotH = sqrt(NdotL * 0.5 + 0.5);
// *********************************************************************************
// Our goal is to use Monte-Carlo integration with importance sampling to evaluate
// X(V) = Integral{Radiance(L) * CBSDF(L, N, V) dL} / Integral{CBSDF(L, N, V) dL}.
// CBSDF = F * D * G * NdotL / (4 * NdotL * NdotV) = F * D * G / (4 * NdotV).
// Weight = CBSDF / PDF.
// We use two approximations of Brian Karis from "Real Shading in Unreal Engine 4":
// (F * G ≈ NdotL) && (NdotV == 1).
// Weight = D * NdotL / (4 * PDF).
// *********************************************************************************
float weight = D_GGX(NdotH, roughness) * NdotL / (4.0 * pdf);
lightInt += weight * val;
cbsdfInt += weight;
}
}
}
// Prevent NaNs arising from the division of 0 by 0.
cbsdfInt = max(cbsdfInt, FLT_MIN);
return float4(lightInt / cbsdfInt, 1.0);
}
#endif // UNITY_IMAGE_BASED_LIGHTING_INCLUDED