您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

498 行
20 KiB

using System;
using UnityEngine.Rendering;
namespace UnityEngine.Experimental.Rendering.HDPipeline
{
[GenerateHLSL]
public struct VolumeProperties
{
public Vector3 scattering; // [0, 1], prefer sRGB
public float extinction; // [0, 1], prefer sRGB
public static VolumeProperties GetNeutralVolumeProperties()
{
VolumeProperties properties = new VolumeProperties();
properties.scattering = Vector3.zero;
properties.extinction = 0;
return properties;
}
} // struct VolumeProperties
[Serializable]
public class VolumeParameters
{
public Bounds bounds; // Position and dimensions in meters
public Color albedo; // Single scattering albedo [0, 1]
public float meanFreePath; // In meters [1, inf]. Should be chromatic - this is an optimization!
public VolumeParameters()
{
bounds = new Bounds(Vector3.zero, Vector3.positiveInfinity);
albedo = new Color(0.5f, 0.5f, 0.5f);
meanFreePath = 10.0f;
}
public bool IsVolumeUnbounded()
{
return bounds.size.x == float.PositiveInfinity &&
bounds.size.y == float.PositiveInfinity &&
bounds.size.z == float.PositiveInfinity;
}
public Vector3 GetAbsorptionCoefficient()
{
float extinction = GetExtinctionCoefficient();
Vector3 scattering = GetScatteringCoefficient();
return Vector3.Max(new Vector3(extinction, extinction, extinction) - scattering, Vector3.zero);
}
public Vector3 GetScatteringCoefficient()
{
float extinction = GetExtinctionCoefficient();
return new Vector3(albedo.r * extinction, albedo.g * extinction, albedo.b * extinction);
}
public float GetExtinctionCoefficient()
{
return 1.0f / meanFreePath;
}
public void Constrain()
{
bounds.size = Vector3.Max(bounds.size, Vector3.zero);
albedo.r = Mathf.Clamp01(albedo.r);
albedo.g = Mathf.Clamp01(albedo.g);
albedo.b = Mathf.Clamp01(albedo.b);
meanFreePath = Mathf.Max(meanFreePath, 1.0f);
}
public VolumeProperties GetProperties()
{
VolumeProperties properties = new VolumeProperties();
properties.scattering = GetScatteringCoefficient();
properties.extinction = GetExtinctionCoefficient();
return properties;
}
} // class VolumeParameters
public partial class HDRenderPipeline : RenderPipeline
{
public enum VolumetricLightingPreset
{
Off,
Normal,
Ultra,
Count
};
VolumetricLightingPreset m_VolumetricLightingPreset
{ get { return (VolumetricLightingPreset)Math.Min(ShaderConfig.s_VolumetricLightingPreset, (int)VolumetricLightingPreset.Count); } }
ComputeShader m_VolumetricLightingCS { get { return m_Asset.renderPipelineResources.volumetricLightingCS; } }
float m_VBufferNearPlane = 0.5f; // Distance in meters; dynamic modifications not handled by reprojection
float m_VBufferFarPlane = 64.0f; // Distance in meters; dynamic modifications not handled by reprojection
const int k_VBufferCount = 3; // 0 and 1 - history (prev) and feedback (next), 2 - integral (curr)
RenderTexture[] m_VBufferLighting = null;
RenderTargetIdentifier[] m_VBufferLightingRT = null;
int m_ViewCount = 0;
int[] m_ViewIdArray = new int[8];
int ViewOffsetFromViewId(int viewId)
{
int viewOffset = -1;
Debug.Assert(m_ViewCount == 0 || m_ViewIdArray != null);
for (int i = 0; i < m_ViewCount; i++)
{
if (m_ViewIdArray[i] == viewId)
{
viewOffset = i;
}
}
return viewOffset;
}
public static int ComputeVBufferTileSize(VolumetricLightingPreset preset)
{
switch (preset)
{
case VolumetricLightingPreset.Normal:
return 8;
case VolumetricLightingPreset.Ultra:
return 4;
case VolumetricLightingPreset.Off:
return 0;
default:
Debug.Assert(false, "Encountered an unexpected VolumetricLightingPreset.");
return 0;
}
}
public static int ComputeVBufferSliceCount(VolumetricLightingPreset preset)
{
switch (preset)
{
case VolumetricLightingPreset.Normal:
return 128;
case VolumetricLightingPreset.Ultra:
return 256;
case VolumetricLightingPreset.Off:
return 0;
default:
Debug.Assert(false, "Encountered an unexpected VolumetricLightingPreset.");
return 0;
}
}
// Since a single voxel corresponds to a tile (e.g. 8x8) of pixels,
// the VBuffer can potentially extend past the boundaries of the viewport.
// The function returns the fraction of the {width, height} of the VBuffer visible on screen.
Vector2 ComputeVBufferResolutionAndScale(float screenWidth, float screenHeight,
ref int w, ref int h, ref int d)
{
int t = ComputeVBufferTileSize(m_VolumetricLightingPreset);
// Ceil(ScreenSize / TileSize).
w = ((int)screenWidth + t - 1) / t;
h = ((int)screenHeight + t - 1) / t;
d = ComputeVBufferSliceCount(m_VolumetricLightingPreset);
return new Vector2(screenWidth / (w * t), screenHeight / (h * t));
}
void ResizeVBuffer(int viewId, int screenWidth, int screenHeight)
{
int viewOffset = ViewOffsetFromViewId(viewId);
if (viewOffset >= 0)
{
// Found, check resolution.
int w = 0, h = 0, d = 0;
ComputeVBufferResolutionAndScale(screenWidth, screenHeight, ref w, ref h, ref d);
Debug.Assert(m_VBufferLighting != null);
Debug.Assert(m_VBufferLighting.Length >= (viewOffset + 1) * k_VBufferCount);
Debug.Assert(m_VBufferLighting[viewOffset * k_VBufferCount] != null);
if (w == m_VBufferLighting[viewOffset * k_VBufferCount].width &&
h == m_VBufferLighting[viewOffset * k_VBufferCount].height &&
d == m_VBufferLighting[viewOffset * k_VBufferCount].volumeDepth)
{
// Everything matches, nothing to do here.
return;
}
}
// Otherwise, we have to recreate the VBuffer.
CreateVBuffer(viewId, screenWidth, screenHeight);
}
void CreateVBuffer(int viewId, int screenWidth, int screenHeight)
{
// Clean up first.
DestroyVBuffer(viewId);
int viewOffset = ViewOffsetFromViewId(viewId);
if (viewOffset < 0)
{
// Not found. Push back.
viewOffset = m_ViewCount++;
Debug.Assert(viewOffset < 8);
m_ViewIdArray[viewOffset] = viewId;
if (m_VBufferLighting == null)
{
// Lazy initialize.
m_VBufferLighting = new RenderTexture[k_VBufferCount];
m_VBufferLightingRT = new RenderTargetIdentifier[k_VBufferCount];
}
else if (m_VBufferLighting.Length < m_ViewCount * k_VBufferCount)
{
// Grow by reallocation and copy.
RenderTexture[] newArray = new RenderTexture[m_ViewCount * k_VBufferCount];
RenderTargetIdentifier[] newArrayRT = new RenderTargetIdentifier[m_ViewCount * k_VBufferCount];
for (int i = 0, n = m_VBufferLighting.Length; i < n; i++)
{
newArray[i] = m_VBufferLighting[i];
newArrayRT[i] = m_VBufferLightingRT[i];
}
// Reassign and release memory.
m_VBufferLighting = newArray;
m_VBufferLightingRT = newArrayRT;
}
}
Debug.Assert(m_VBufferLighting != null);
int w = 0, h = 0, d = 0;
ComputeVBufferResolutionAndScale(screenWidth, screenHeight, ref w, ref h, ref d);
for (int i = viewOffset * k_VBufferCount,
n = viewOffset * k_VBufferCount + k_VBufferCount; i < n; i++)
{
m_VBufferLighting[i] = new RenderTexture(w, h, 0, RenderTextureFormat.ARGBHalf, RenderTextureReadWrite.Linear);
m_VBufferLighting[i].filterMode = FilterMode.Trilinear; // Custom
m_VBufferLighting[i].dimension = TextureDimension.Tex3D; // TODO: request the thick 3D tiling layout
m_VBufferLighting[i].volumeDepth = d;
m_VBufferLighting[i].enableRandomWrite = true;
m_VBufferLighting[i].Create();
m_VBufferLightingRT[i] = new RenderTargetIdentifier(m_VBufferLighting[i]);
// No clean way to clear a RenderTexture without a CommandBuffer? Ridiculous.
RenderTexture saveRT = UnityEngine.RenderTexture.active;
RenderTexture.active = m_VBufferLighting[i];
GL.Clear(false, true, CoreUtils.clearColorAllBlack);
RenderTexture.active = saveRT;
}
}
void DestroyVBuffer(int viewId)
{
int viewOffset = ViewOffsetFromViewId(viewId);
if (viewOffset < 0)
{
// Not found.
return;
}
int lastOffset = m_ViewCount - 1;
Debug.Assert(lastOffset >= 0);
if (m_VBufferLighting != null)
{
Debug.Assert(m_VBufferLighting.Length >= m_ViewCount * k_VBufferCount);
for (int i = 0; i < k_VBufferCount; i++)
{
int viewBuffer = viewOffset * k_VBufferCount + i;
int lastBuffer = lastOffset * k_VBufferCount + i;
// Release the memory.
if (m_VBufferLighting[viewBuffer] != null)
{
m_VBufferLighting[viewBuffer].Release();
}
// Swap with the last element.
m_VBufferLighting[viewBuffer] = m_VBufferLighting[lastBuffer];
m_VBufferLightingRT[viewBuffer] = m_VBufferLightingRT[lastBuffer];
}
}
// Swap with the last element and shrink the array.
m_ViewIdArray[viewOffset] = m_ViewIdArray[lastOffset];
m_ViewCount--;
}
// Uses a logarithmic depth encoding.
// Near plane: depth = 0; far plane: depth = 1.
// x = n, y = log2(f/n), z = 1/n, w = 1/log2(f/n).
public static Vector4 ComputeLogarithmicDepthEncodingParams(float nearPlane, float farPlane)
{
Vector4 depthParams = new Vector4();
float n = nearPlane;
float f = farPlane;
depthParams.x = n;
depthParams.y = Mathf.Log(f / n, 2);
depthParams.z = 1.0f / depthParams.x;
depthParams.w = 1.0f / depthParams.y;
return depthParams;
}
// Returns NULL if a global fog component does not exist, or is not enabled.
public static HomogeneousFog GetGlobalFogComponent()
{
HomogeneousFog globalFogComponent = null;
HomogeneousFog[] fogComponents = Object.FindObjectsOfType(typeof(HomogeneousFog)) as HomogeneousFog[];
foreach (HomogeneousFog fogComponent in fogComponents)
{
if (fogComponent.enabled && fogComponent.volumeParameters.IsVolumeUnbounded())
{
globalFogComponent = fogComponent;
break;
}
}
return globalFogComponent;
}
RenderTargetIdentifier GetVBufferLightingHistory(int viewOffset) // From the previous frame
{
return m_VBufferLightingRT[viewOffset * k_VBufferCount + ((Time.renderedFrameCount + 0) & 1)]; // Does not work in the Scene view
}
RenderTargetIdentifier GetVBufferLightingFeedback(int viewOffset) // For the next frame
{
return m_VBufferLightingRT[viewOffset * k_VBufferCount + ((Time.renderedFrameCount + 1) & 1)]; // Does not work in the Scene view
}
RenderTargetIdentifier GetVBufferLightingIntegral(int viewOffset) // Of the current frame
{
return m_VBufferLightingRT[viewOffset * k_VBufferCount + 2];
}
public void SetVolumetricLightingData(HDCamera camera, CommandBuffer cmd)
{
HomogeneousFog globalFogComponent = GetGlobalFogComponent();
// TODO: may want to cache these results somewhere.
VolumeProperties globalFogProperties = (globalFogComponent != null) ? globalFogComponent.volumeParameters.GetProperties()
: VolumeProperties.GetNeutralVolumeProperties();
cmd.SetGlobalVector(HDShaderIDs._GlobalFog_Scattering, globalFogProperties.scattering);
cmd.SetGlobalFloat( HDShaderIDs._GlobalFog_Extinction, globalFogProperties.extinction);
int w = 0, h = 0, d = 0;
Vector2 scale = ComputeVBufferResolutionAndScale(camera.screenSize.x, camera.screenSize.y, ref w, ref h, ref d);
int viewId = camera.camera.GetInstanceID();
int viewOffset = ViewOffsetFromViewId(viewId);
cmd.SetGlobalVector( HDShaderIDs._VBufferResolution, new Vector4(w, h, 1.0f / w, 1.0f / h));
cmd.SetGlobalVector( HDShaderIDs._VBufferScaleAndSliceCount, new Vector4(scale.x, scale.y, d, 1.0f / d));
cmd.SetGlobalVector( HDShaderIDs._VBufferDepthEncodingParams, ComputeLogarithmicDepthEncodingParams(m_VBufferNearPlane, m_VBufferFarPlane));
cmd.SetGlobalTexture(HDShaderIDs._VBufferLighting, GetVBufferLightingIntegral(viewOffset));
}
// Ref: https://en.wikipedia.org/wiki/Close-packing_of_equal_spheres
// The returned {x, y} coordinates (and all spheres) are all within the (-0.5, 0.5)^2 range.
// The pattern has been rotated by 15 degrees to maximize the resolution along X and Y:
// https://www.desmos.com/calculator/kcpfvltz7c
Vector2[] GetHexagonalClosePackedSpheres7()
{
Vector2[] coords = new Vector2[7];
float r = 0.17054068870105443882f;
float d = 2 * r;
float s = r * Mathf.Sqrt(3);
// Try to keep the weighted average as close to the center (0.5) as possible.
// (7)(5) ( )( ) ( )( ) ( )( ) ( )( ) ( )(o) ( )(x) (o)(x) (x)(x)
// (2)(1)(3) ( )(o)( ) (o)(x)( ) (x)(x)(o) (x)(x)(x) (x)(x)(x) (x)(x)(x) (x)(x)(x) (x)(x)(x)
// (4)(6) ( )( ) ( )( ) ( )( ) (o)( ) (x)( ) (x)(o) (x)(x) (x)(x)
coords[0] = new Vector2( 0, 0);
coords[1] = new Vector2(-d, 0);
coords[2] = new Vector2( d, 0);
coords[3] = new Vector2(-r, -s);
coords[4] = new Vector2( r, s);
coords[5] = new Vector2( r, -s);
coords[6] = new Vector2(-r, s);
// Rotate the sampling pattern by 15 degrees.
const float cos15 = 0.96592582628906828675f;
const float sin15 = 0.25881904510252076235f;
for (int i = 0; i < 7; i++)
{
Vector2 coord = coords[i];
coords[i].x = coord.x * cos15 - coord.y * sin15;
coords[i].y = coord.x * sin15 + coord.y * cos15;
}
return coords;
}
void VolumetricLightingPass(HDCamera camera, CommandBuffer cmd)
{
if (m_VolumetricLightingPreset == VolumetricLightingPreset.Off) return;
using (new ProfilingSample(cmd, "Volumetric Lighting"))
{
int viewId = camera.camera.GetInstanceID(); // Warning: different views can use the same camera
int viewOffset = ViewOffsetFromViewId(viewId);
if (GetGlobalFogComponent() == null)
{
// Clear the render target instead of running the shader.
CoreUtils.SetRenderTarget(cmd, GetVBufferLightingHistory(viewOffset), ClearFlag.Color, CoreUtils.clearColorAllBlack);
return;
}
bool enableClustered = m_FrameSettings.lightLoopSettings.enableTileAndCluster;
bool enableReprojection = Application.isPlaying && camera.camera.cameraType == CameraType.Game;
int kernel;
if (enableReprojection)
{
// Only available in the Play Mode because all the frame counters in the Edit Mode are broken.
kernel = m_VolumetricLightingCS.FindKernel(enableClustered ? "VolumetricLightingClusteredReproj"
: "VolumetricLightingAllLightsReproj");
}
else
{
kernel = m_VolumetricLightingCS.FindKernel(enableClustered ? "VolumetricLightingClustered"
: "VolumetricLightingAllLights");
}
int w = 0, h = 0, d = 0;
Vector2 scale = ComputeVBufferResolutionAndScale(camera.screenSize.x, camera.screenSize.y, ref w, ref h, ref d);
float vFoV = camera.camera.fieldOfView * Mathf.Deg2Rad;
// Compose the matrix which allows us to compute the world space view direction.
// Compute it using the scaled resolution to account for the visible area of the VBuffer.
Vector4 scaledRes = new Vector4(w * scale.x, h * scale.y, 1.0f / (w * scale.x), 1.0f / (h * scale.y));
Matrix4x4 transform = HDUtils.ComputePixelCoordToWorldSpaceViewDirectionMatrix(vFoV, scaledRes, camera.viewMatrix, false);
camera.SetupComputeShader(m_VolumetricLightingCS, cmd);
Vector2[] xySeq = GetHexagonalClosePackedSpheres7();
// This is a sequence of 7 equidistant numbers from 1/14 to 13/14.
// Each of them is the centroid of the interval of length 2/14.
// They've been rearranged in a sequence of pairs {small, large}, s.t. (small + large) = 1.
// That way, the running average position is close to 0.5.
// | 6 | 2 | 4 | 1 | 5 | 3 | 7 |
// | | | | o | | | |
// | | o | | x | | | |
// | | x | | x | | o | |
// | | x | o | x | | x | |
// | | x | x | x | o | x | |
// | o | x | x | x | x | x | |
// | x | x | x | x | x | x | o |
// | x | x | x | x | x | x | x |
float[] zSeq = {7.0f/14.0f, 3.0f/14.0f, 11.0f/14.0f, 5.0f/14.0f, 9.0f/14.0f, 1.0f/14.0f, 13.0f/14.0f};
int rfc = Time.renderedFrameCount;
int sampleIndex = rfc % 7;
Vector4 offset = new Vector4(xySeq[sampleIndex].x, xySeq[sampleIndex].y, zSeq[sampleIndex], rfc);
// TODO: set 'm_VolumetricLightingPreset'.
cmd.SetComputeVectorParam( m_VolumetricLightingCS, HDShaderIDs._VBufferSampleOffset, offset);
cmd.SetComputeMatrixParam( m_VolumetricLightingCS, HDShaderIDs._VBufferCoordToViewDirWS, transform);
cmd.SetComputeTextureParam(m_VolumetricLightingCS, kernel, HDShaderIDs._VBufferLightingHistory, GetVBufferLightingHistory(viewOffset)); // Read
cmd.SetComputeTextureParam(m_VolumetricLightingCS, kernel, HDShaderIDs._VBufferLightingFeedback, GetVBufferLightingFeedback(viewOffset)); // Write
cmd.SetComputeTextureParam(m_VolumetricLightingCS, kernel, HDShaderIDs._VBufferLightingIntegral, GetVBufferLightingIntegral(viewOffset)); // Write
// The shader defines GROUP_SIZE_1D = 16.
cmd.DispatchCompute(m_VolumetricLightingCS, kernel, (w + 15) / 16, (h + 15) / 16, 1);
}
}
} // class HDRenderPipeline
} // namespace UnityEngine.Experimental.Rendering.HDPipeline