您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
276 行
10 KiB
276 行
10 KiB
#ifndef UNITY_COMMON_LIGHTING_INCLUDED
|
|
#define UNITY_COMMON_LIGHTING_INCLUDED
|
|
|
|
// These clamping function to max of floating point 16 bit are use to prevent INF in code in case of extreme value
|
|
float ClampToFloat16Max(float value)
|
|
{
|
|
return min(value, 65504.0);
|
|
}
|
|
|
|
float2 ClampToFloat16Max(float2 value)
|
|
{
|
|
return min(value, 65504.0);
|
|
}
|
|
|
|
float3 ClampToFloat16Max(float3 value)
|
|
{
|
|
return min(value, 65504.0);
|
|
}
|
|
|
|
float4 ClampToFloat16Max(float4 value)
|
|
{
|
|
return min(value, 65504.0);
|
|
}
|
|
|
|
// Ligthing convention
|
|
// Light direction is oriented backward (-Z). i.e in shader code, light direction is -lightData.forward
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Helper functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Performs the mapping of the vector 'v' centered within the axis-aligned cube
|
|
// of dimensions [-1, 1]^3 to a vector centered within the unit sphere.
|
|
// The function expects 'v' to be within the cube (possibly unexpected results otherwise).
|
|
// Ref: http://mathproofs.blogspot.com/2005/07/mapping-cube-to-sphere.html
|
|
float3 MapCubeToSphere(float3 v)
|
|
{
|
|
float3 v2 = v * v;
|
|
float2 vr3 = v2.xy * rcp(3.0);
|
|
return v * sqrt((float3)1.0 - 0.5 * v2.yzx - 0.5 * v2.zxy + vr3.yxx * v2.zzy);
|
|
}
|
|
|
|
// Computes the squared magnitude of the vector computed by MapCubeToSphere().
|
|
float ComputeCubeToSphereMapSqMagnitude(float3 v)
|
|
{
|
|
float3 v2 = v * v;
|
|
// Note: dot(v, v) is often computed before this function is called,
|
|
// so the compiler should optimize and use the precomputed result here.
|
|
return dot(v, v) - v2.x * v2.y - v2.y * v2.z - v2.z * v2.x + v2.x * v2.y * v2.z;
|
|
}
|
|
|
|
// texelArea = 4.0 / (resolution * resolution).
|
|
// Ref: http://bpeers.com/blog/?itemid=1017
|
|
float ComputeCubemapTexelSolidAngle(float3 L, float texelArea)
|
|
{
|
|
// Stretch 'L' by (1/d) so that it points at a side of a [-1, 1]^2 cube.
|
|
float d = Max3(abs(L.x), abs(L.y), abs(L.z));
|
|
// Since 'L' is a unit vector, we can directly compute its
|
|
// new (inverse) length without dividing 'L' by 'd' first.
|
|
float invDist = d;
|
|
|
|
// dw = dA * cosTheta / (dist * dist), cosTheta = 1.0 / dist,
|
|
// where 'dA' is the area of the cube map texel.
|
|
return texelArea * invDist * invDist * invDist;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Attenuation functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Ref: Moving Frostbite to PBR
|
|
float SmoothDistanceAttenuation(float squaredDistance, float invSqrAttenuationRadius)
|
|
{
|
|
float factor = squaredDistance * invSqrAttenuationRadius;
|
|
float smoothFactor = saturate(1.0 - factor * factor);
|
|
return smoothFactor * smoothFactor;
|
|
}
|
|
|
|
#define PUNCTUAL_LIGHT_THRESHOLD 0.01 // 1cm (in Unity 1 is 1m)
|
|
|
|
float GetDistanceAttenuation(float sqrDist, float invSqrAttenuationRadius)
|
|
{
|
|
float attenuation = 1.0 / (max(PUNCTUAL_LIGHT_THRESHOLD * PUNCTUAL_LIGHT_THRESHOLD, sqrDist));
|
|
// Non physically based hack to limit light influence to attenuationRadius.
|
|
attenuation *= SmoothDistanceAttenuation(sqrDist, invSqrAttenuationRadius);
|
|
return attenuation;
|
|
}
|
|
|
|
float GetDistanceAttenuation(float3 unL, float invSqrAttenuationRadius)
|
|
{
|
|
float sqrDist = dot(unL, unL);
|
|
return GetDistanceAttenuation(sqrDist, invSqrAttenuationRadius);
|
|
}
|
|
|
|
float GetAngleAttenuation(float3 L, float3 lightDir, float lightAngleScale, float lightAngleOffset)
|
|
{
|
|
float cd = dot(lightDir, L);
|
|
float attenuation = saturate(cd * lightAngleScale + lightAngleOffset);
|
|
// smooth the transition
|
|
attenuation *= attenuation;
|
|
|
|
return attenuation;
|
|
}
|
|
|
|
// Applies SmoothDistanceAttenuation() after transforming the attenuation ellipsoid into a sphere.
|
|
// If r = rsqrt(invSqRadius), then the ellipsoid is defined s.t. r1 = r / invAspectRatio, r2 = r3 = r.
|
|
// The transformation is performed along the major axis of the ellipsoid (corresponding to 'r1').
|
|
// Both the ellipsoid (e.i. 'axis') and 'unL' should be in the same coordinate system.
|
|
// 'unL' should be computed from the center of the ellipsoid.
|
|
float GetEllipsoidalDistanceAttenuation(float3 unL, float invSqRadius,
|
|
float3 axis, float invAspectRatio)
|
|
{
|
|
// Project the unnormalized light vector onto the axis.
|
|
float projL = dot(unL, axis);
|
|
|
|
// Transform the light vector instead of transforming the ellipsoid.
|
|
float diff = projL - projL * invAspectRatio;
|
|
unL -= diff * axis;
|
|
|
|
float sqDist = dot(unL, unL);
|
|
return SmoothDistanceAttenuation(sqDist, invSqRadius);
|
|
}
|
|
|
|
// Applies SmoothDistanceAttenuation() using the axis-aligned ellipsoid of the given dimensions.
|
|
// Both the ellipsoid and 'unL' should be in the same coordinate system.
|
|
// 'unL' should be computed from the center of the ellipsoid.
|
|
float GetEllipsoidalDistanceAttenuation(float3 unL, float3 invHalfDim)
|
|
{
|
|
// Transform the light vector so that we can work with
|
|
// with the ellipsoid as if it was a unit sphere.
|
|
unL *= invHalfDim;
|
|
|
|
float sqDist = dot(unL, unL);
|
|
return SmoothDistanceAttenuation(sqDist, 1.0);
|
|
}
|
|
|
|
// Applies SmoothDistanceAttenuation() after mapping the axis-aligned box to a sphere.
|
|
// If the diagonal of the box is 'd', invHalfDim = rcp(0.5 * d).
|
|
// Both the box and 'unL' should be in the same coordinate system.
|
|
// 'unL' should be computed from the center of the box.
|
|
float GetBoxDistanceAttenuation(float3 unL, float3 invHalfDim)
|
|
{
|
|
// Transform the light vector so that we can work with
|
|
// with the box as if it was a [-1, 1]^2 cube.
|
|
unL *= invHalfDim;
|
|
|
|
// Our algorithm expects the input vector to be within the cube.
|
|
if (Max3(abs(unL.x), abs(unL.y), abs(unL.z)) > 1.0) return 0.0;
|
|
|
|
float sqDist = ComputeCubeToSphereMapSqMagnitude(unL);
|
|
return SmoothDistanceAttenuation(sqDist, 1.0);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// IES Helper
|
|
//-----------------------------------------------------------------------------
|
|
|
|
float2 GetIESTextureCoordinate(float3x3 lightToWord, float3 L)
|
|
{
|
|
// IES need to be sample in light space
|
|
float3 dir = mul(lightToWord, -L); // Using matrix on left side do a transpose
|
|
|
|
// convert to spherical coordinate
|
|
float2 sphericalCoord; // .x is theta, .y is phi
|
|
// Texture is encoded with cos(phi), scale from -1..1 to 0..1
|
|
sphericalCoord.y = (dir.z * 0.5) + 0.5;
|
|
float theta = atan2(dir.y, dir.x);
|
|
sphericalCoord.x = theta * INV_TWO_PI;
|
|
|
|
return sphericalCoord;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Lighting functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Ref: Horizon Occlusion for Normal Mapped Reflections: http://marmosetco.tumblr.com/post/81245981087
|
|
float GetHorizonOcclusion(float3 V, float3 normalWS, float3 vertexNormal, float horizonFade)
|
|
{
|
|
float3 R = reflect(-V, normalWS);
|
|
float specularOcclusion = saturate(1.0 + horizonFade * dot(R, vertexNormal));
|
|
// smooth it
|
|
return specularOcclusion * specularOcclusion;
|
|
}
|
|
|
|
// Ref: Moving Frostbite to PBR - Gotanda siggraph 2011
|
|
// Return specular occlusion based on ambient occlusion (usually get from SSAO) and view/roughness info
|
|
float GetSpecularOcclusionFromAmbientOcclusion(float NdotV, float ambientOcclusion, float roughness)
|
|
{
|
|
return saturate(PositivePow(NdotV + ambientOcclusion, exp2(-16.0 * roughness - 1.0)) - 1.0 + ambientOcclusion);
|
|
}
|
|
|
|
// ref: Practical Realtime Strategies for Accurate Indirect Occlusion
|
|
// Update ambient occlusion to colored ambient occlusion based on statitics of how light is bouncing in an object and with the albedo of the object
|
|
float3 GTAOMultiBounce(float visibility, float3 albedo)
|
|
{
|
|
float3 a = 2.0404 * albedo - 0.3324;
|
|
float3 b = -4.7951 * albedo + 0.6417;
|
|
float3 c = 2.7552 * albedo + 0.6903;
|
|
|
|
float x = visibility;
|
|
return max(x, ((x * a + b) * x + c) * x);
|
|
}
|
|
|
|
// Based on Oat and Sander's 2008 technique
|
|
// Area/solidAngle of intersection of two cone
|
|
float SphericalCapIntersectionSolidArea(float cosC1, float cosC2, float cosB)
|
|
{
|
|
float r1 = FastACos(cosC1);
|
|
float r2 = FastACos(cosC2);
|
|
float rd = FastACos(cosB);
|
|
float area = 0.0;
|
|
|
|
if (rd <= max(r1, r2) - min(r1, r2))
|
|
{
|
|
// One cap is completely inside the other
|
|
area = TWO_PI - TWO_PI * max(cosC1, cosC2);
|
|
}
|
|
else if (rd >= r1 + r2)
|
|
{
|
|
// No intersection exists
|
|
area = 0.0;
|
|
}
|
|
else
|
|
{
|
|
float diff = abs(r1 - r2);
|
|
float den = r1 + r2 - diff;
|
|
float x = 1.0 - saturate((rd - diff) / den);
|
|
area = smoothstep(0.0, 1.0, x);
|
|
area *= TWO_PI - TWO_PI * max(cosC1, cosC2);
|
|
}
|
|
|
|
return area;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Helper functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// 'NdotV' can become negative for visible pixels due to the perspective projection, normal mapping and decals.
|
|
// This can produce visible artifacts under specular lighting, both direct (overly dark/bright pixels) and indirect (incorrect cubemap direction).
|
|
// One way of avoiding these artifacts is to limit the value of 'NdotV' to a small positive number,
|
|
// and calculate the reflection vector for the cubemap fetch using a normal shifted into view.
|
|
float3 GetViewShiftedNormal(float3 N, float3 V, float NdotV, float minNdotV)
|
|
{
|
|
if (NdotV < minNdotV)
|
|
{
|
|
// We do not renormalize the normal to save a few clock cycles.
|
|
// The magnitude difference is typically negligible, and the normal is only used to compute
|
|
// the reflection vector for the IBL cube map fetch (which does not depend on the magnitude).
|
|
N += (-NdotV + minNdotV) * V;
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
// Generates an orthonormal right-handed basis from a unit vector.
|
|
// Ref: http://marc-b-reynolds.github.io/quaternions/2016/07/06/Orthonormal.html
|
|
float3x3 GetLocalFrame(float3 localZ)
|
|
{
|
|
float x = localZ.x;
|
|
float y = localZ.y;
|
|
float z = localZ.z;
|
|
float sz = z >= 0 ? 1 : -1;
|
|
float a = 1 / (sz + z);
|
|
float ya = y * a;
|
|
float b = x * ya;
|
|
float c = x * sz;
|
|
|
|
float3 localX = float3(c * x * a - 1, sz * b, c);
|
|
float3 localY = float3(b, y * ya - sz, y);
|
|
|
|
return float3x3(localX, localY, localZ);
|
|
}
|
|
|
|
#endif // UNITY_COMMON_LIGHTING_INCLUDED
|