您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

999 行
50 KiB

using System;
using System.Collections.Generic;
using UnityEngine.Rendering;
using UnityEngine.Rendering.PostProcessing;
using UnityEngine.XR;
namespace UnityEngine.Experimental.Rendering.LightweightPipeline
{
[Serializable]
public class ShadowSettings
{
public bool enabled;
public int shadowAtlasWidth;
public int shadowAtlasHeight;
public float maxShadowDistance;
public int directionalLightCascadeCount;
public Vector3 directionalLightCascades;
public float directionalLightNearPlaneOffset;
static ShadowSettings defaultShadowSettings = null;
public static ShadowSettings Default
{
get
{
if (defaultShadowSettings == null)
{
defaultShadowSettings = new ShadowSettings();
defaultShadowSettings.enabled = true;
defaultShadowSettings.shadowAtlasHeight = defaultShadowSettings.shadowAtlasWidth = 4096;
defaultShadowSettings.directionalLightCascadeCount = 1;
defaultShadowSettings.directionalLightCascades = new Vector3(0.05F, 0.2F, 0.3F);
defaultShadowSettings.directionalLightCascadeCount = 4;
defaultShadowSettings.directionalLightNearPlaneOffset = 5;
defaultShadowSettings.maxShadowDistance = 1000.0F;
}
return defaultShadowSettings;
}
}
}
public struct ShadowSliceData
{
public Matrix4x4 shadowTransform;
public int atlasX;
public int atlasY;
public int shadowResolution;
}
public struct LightData
{
public int pixelAdditionalLightsCount;
public int totalAdditionalLightsCount;
public int mainLightIndex;
public bool shadowsRendered;
}
public class LightweightPipeline : RenderPipeline
{
private readonly LightweightPipelineAsset m_Asset;
// Maximum amount of visible lights the shader can process. This controls the constant global light buffer size.
// It must match the MAX_VISIBLE_LIGHTS in LightweightCore.cginc
private static readonly int kMaxVisibleAdditionalLights = 16;
// Lights are culled per-object. This holds the maximum amount of additional lights that can shade each object.
// The engine fills in the lights indices per-object in unity4_LightIndices0 and unity_4LightIndices1
private static readonly int kMaxPerObjectAdditionalLights = 8;
private Vector4[] m_LightPositions = new Vector4[kMaxVisibleAdditionalLights];
private Vector4[] m_LightColors = new Vector4[kMaxVisibleAdditionalLights];
private Vector4[] m_LightAttenuations = new Vector4[kMaxVisibleAdditionalLights];
private Vector4[] m_LightSpotDirections = new Vector4[kMaxVisibleAdditionalLights];
private Camera m_CurrCamera = null;
private static readonly int kMaxCascades = 4;
private int m_ShadowCasterCascadesCount = kMaxCascades;
private int m_ShadowMapTexture;
private int m_CameraColorTexture;
private int m_CameraDepthTexture;
private int m_CameraCopyDepthTexture;
private RenderTargetIdentifier m_ShadowMapRT;
private RenderTargetIdentifier m_CameraColorRT;
private RenderTargetIdentifier m_CameraDepthRT;
private RenderTargetIdentifier m_CameraCopyDepthRT;
private bool m_IntermediateTextureArray = false;
private const int kShadowDepthBufferBits = 16;
private const int kCameraDepthBufferBits = 32;
private Vector4[] m_DirectionalShadowSplitDistances = new Vector4[kMaxCascades];
private ShadowSettings m_ShadowSettings = ShadowSettings.Default;
private ShadowSliceData[] m_ShadowSlices = new ShadowSliceData[kMaxCascades];
private static readonly ShaderPassName m_LitPassName = new ShaderPassName("LightweightForward");
private static readonly ShaderPassName m_UnlitPassName = new ShaderPassName("SRPDefaultUnlit");
private RenderTextureFormat m_ColorFormat;
private PostProcessRenderContext m_PostProcessRenderContext;
private PostProcessLayer m_CameraPostProcessLayer;
private CameraComparer m_CameraComparer = new CameraComparer();
private LightComparer m_LightCompararer = new LightComparer();
// Maps from sorted light indices to original unsorted. We need this for shadow rendering
// and per-object light lists.
private List<int> m_SortedLightIndexMap = new List<int>();
private Mesh m_BlitQuad;
private Material m_BlitMaterial;
private Material m_CopyDepthMaterial;
private int m_BlitTexID = Shader.PropertyToID("_BlitTex");
private CopyTextureSupport m_CopyTextureSupport;
public LightweightPipeline(LightweightPipelineAsset asset)
{
m_Asset = asset;
BuildShadowSettings();
PerFrameBuffer._GlossyEnvironmentColor = Shader.PropertyToID("_GlossyEnvironmentColor");
PerFrameBuffer._AttenuationTexture = Shader.PropertyToID("_AttenuationTexture");
// Lights are culled per-camera. Therefore we need to reset light buffers on each camera render
PerCameraBuffer._MainLightPosition = Shader.PropertyToID("_MainLightPosition");
PerCameraBuffer._MainLightColor = Shader.PropertyToID("_MainLightColor");
PerCameraBuffer._MainLightAttenuationParams = Shader.PropertyToID("_MainLightAttenuationParams");
PerCameraBuffer._MainLightSpotDir = Shader.PropertyToID("_MainLightSpotDir");
PerCameraBuffer._MainLightCookie = Shader.PropertyToID("_MainLightCookie");
PerCameraBuffer._WorldToLight = Shader.PropertyToID("_WorldToLight");
PerCameraBuffer._AdditionalLightCount = Shader.PropertyToID("_AdditionalLightCount");
PerCameraBuffer._AdditionalLightPosition = Shader.PropertyToID("_AdditionalLightPosition");
PerCameraBuffer._AdditionalLightColor = Shader.PropertyToID("_AdditionalLightColor");
PerCameraBuffer._AdditionalLightAttenuationParams = Shader.PropertyToID("_AdditionalLightAttenuationParams");
PerCameraBuffer._AdditionalLightSpotDir = Shader.PropertyToID("_AdditionalLightSpotDir");
m_ShadowMapTexture = Shader.PropertyToID("_ShadowMap");
m_CameraColorTexture = Shader.PropertyToID("_CameraColorTexture");
m_CameraDepthTexture = Shader.PropertyToID("_CameraDepthTexture");
m_CameraCopyDepthTexture = Shader.PropertyToID("_CameraCopyDepthTexture");
m_ShadowMapRT = new RenderTargetIdentifier(m_ShadowMapTexture);
m_CameraColorRT = new RenderTargetIdentifier(m_CameraColorTexture);
m_CameraDepthRT = new RenderTargetIdentifier(m_CameraDepthTexture);
m_CameraCopyDepthRT = new RenderTargetIdentifier(m_CameraCopyDepthTexture);
m_PostProcessRenderContext = new PostProcessRenderContext();
m_CopyTextureSupport = SystemInfo.copyTextureSupport;
// Let engine know we have MSAA on for cases where we support MSAA backbuffer
if (QualitySettings.antiAliasing != m_Asset.MSAASampleCount)
QualitySettings.antiAliasing = m_Asset.MSAASampleCount;
Shader.globalRenderPipeline = "LightweightPipeline";
m_BlitQuad = LightweightUtils.CreateQuadMesh(false);
m_BlitMaterial = new Material(m_Asset.BlitShader)
{
hideFlags = HideFlags.HideAndDontSave
};
m_CopyDepthMaterial = new Material(m_Asset.CopyDepthShader)
{
hideFlags = HideFlags.HideAndDontSave
};
}
public override void Dispose()
{
base.Dispose();
Shader.globalRenderPipeline = "";
}
CullResults m_CullResults;
public override void Render(ScriptableRenderContext context, Camera[] cameras)
{
base.Render(context, cameras);
bool stereoEnabled = XRSettings.isDeviceActive;
// TODO: This is at the moment required for all pipes. We should not implicitly change user project settings
// instead this should be forced when using SRP, since all SRP use linear lighting.
GraphicsSettings.lightsUseLinearIntensity = true;
SetupPerFrameShaderConstants(ref context);
// Sort cameras array by camera depth
Array.Sort(cameras, m_CameraComparer);
foreach (Camera camera in cameras)
{
m_CurrCamera = camera;
ScriptableCullingParameters cullingParameters;
if (!CullResults.GetCullingParameters(m_CurrCamera, stereoEnabled, out cullingParameters))
continue;
cullingParameters.shadowDistance = Mathf.Min(m_ShadowSettings.maxShadowDistance,
m_CurrCamera.farClipPlane);
#if UNITY_EDITOR
// Emit scene view UI
if (camera.cameraType == CameraType.SceneView)
ScriptableRenderContext.EmitWorldGeometryForSceneView(camera);
#endif
CullResults.Cull(ref cullingParameters, context, ref m_CullResults);
VisibleLight[] visibleLights = m_CullResults.visibleLights.ToArray();
LightData lightData;
InitializeLightData(visibleLights, out lightData);
ShadowPass(visibleLights, ref context, ref lightData);
ForwardPass(visibleLights, ref context, ref lightData, stereoEnabled);
// Release temporary RT
var cmd = CommandBufferPool.Get("After Camera Render");
cmd.ReleaseTemporaryRT(m_ShadowMapTexture);
cmd.ReleaseTemporaryRT(m_CameraColorTexture);
cmd.ReleaseTemporaryRT(m_CameraDepthTexture);
cmd.ReleaseTemporaryRT(m_CameraCopyDepthTexture);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
context.Submit();
}
}
private void ShadowPass(VisibleLight[] visibleLights, ref ScriptableRenderContext context, ref LightData lightData)
{
if (m_Asset.AreShadowsEnabled() && lightData.mainLightIndex != -1)
{
VisibleLight mainLight = visibleLights[lightData.mainLightIndex];
if (mainLight.light.shadows != LightShadows.None)
{
if (!LightweightUtils.IsSupportedShadowType(mainLight.lightType))
{
Debug.LogWarning("Only directional and spot shadows are supported by LightweightPipeline.");
return;
}
// There's no way to map shadow light indices. We need to pass in the original unsorted index.
// If no additional lights then no light sorting is performed and the indices match.
int shadowOriginalIndex = (lightData.totalAdditionalLightsCount > 0) ? GetLightUnsortedIndex(lightData.mainLightIndex) : lightData.mainLightIndex;
lightData.shadowsRendered = RenderShadows(ref m_CullResults, ref mainLight,
shadowOriginalIndex, ref context);
}
}
}
private void ForwardPass(VisibleLight[] visibleLights, ref ScriptableRenderContext context, ref LightData lightData, bool stereoEnabled)
{
FrameRenderingConfiguration frameRenderingConfiguration;
SetupFrameRendering(out frameRenderingConfiguration);
SetupIntermediateResources(frameRenderingConfiguration, ref context);
SetupShaderConstants(visibleLights, ref context, ref lightData);
// SetupCameraProperties does the following:
// Setup Camera RenderTarget and Viewport
// VR Camera Setup and SINGLE_PASS_STEREO props
// Setup camera view, proj and their inv matrices.
// Setup properties: _WorldSpaceCameraPos, _ProjectionParams, _ScreenParams, _ZBufferParams, unity_OrthoParams
// Setup camera world clip planes props
// setup HDR keyword
// Setup global time properties (_Time, _SinTime, _CosTime)
context.SetupCameraProperties(m_CurrCamera, stereoEnabled);
RendererConfiguration rendererSettings = GetRendererSettings(ref lightData);
BeginForwardRendering(ref context, frameRenderingConfiguration);
RenderOpaques(ref context, rendererSettings);
AfterOpaque(ref context, frameRenderingConfiguration);
RenderTransparents(ref context, rendererSettings);
AfterTransparent(ref context, frameRenderingConfiguration);
EndForwardRendering(ref context, frameRenderingConfiguration);
}
private void RenderOpaques(ref ScriptableRenderContext context, RendererConfiguration settings)
{
var opaqueDrawSettings = new DrawRendererSettings(m_CurrCamera, m_LitPassName);
opaqueDrawSettings.sorting.flags = SortFlags.CommonOpaque;
opaqueDrawSettings.rendererConfiguration = settings;
var opaqueFilterSettings = new FilterRenderersSettings(true)
{
renderQueueRange = RenderQueueRange.opaque
};
context.DrawRenderers(m_CullResults.visibleRenderers, ref opaqueDrawSettings, opaqueFilterSettings);
context.DrawSkybox(m_CurrCamera);
}
private void AfterOpaque(ref ScriptableRenderContext context, FrameRenderingConfiguration config)
{
if (!LightweightUtils.HasFlag(config, FrameRenderingConfiguration.RequireDepth))
return;
CommandBuffer cmd = CommandBufferPool.Get("After Opaque");
cmd.SetGlobalTexture(m_CameraDepthTexture, m_CameraDepthRT);
// When soft particles are enabled we have to copy depth to another RT so we can read and write to depth
if (m_Asset.SupportsSoftParticles)
{
RenderTargetIdentifier colorRT = (m_CurrCamera.targetTexture != null) ? BuiltinRenderTextureType.CameraTarget : m_CameraColorRT;
CopyTexture(cmd, m_CameraDepthRT, m_CameraCopyDepthTexture);
SetupRenderTargets(cmd, colorRT, m_CameraCopyDepthRT);
}
// Only takes effect if custom BeforeTransparent PostProcessing effects are active
if (LightweightUtils.HasFlag(config, FrameRenderingConfiguration.PostProcess))
RenderPostProcess(cmd , true);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
}
private void AfterTransparent(ref ScriptableRenderContext context, FrameRenderingConfiguration config)
{
if (!LightweightUtils.HasFlag(config, FrameRenderingConfiguration.PostProcess))
return;
CommandBuffer cmd = CommandBufferPool.Get("After Transparent");
RenderPostProcess(cmd, false);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
}
private void RenderTransparents(ref ScriptableRenderContext context, RendererConfiguration config)
{
var transparentSettings = new DrawRendererSettings(m_CurrCamera, m_LitPassName);
transparentSettings.SetShaderPassName(1, m_UnlitPassName);
transparentSettings.sorting.flags = SortFlags.CommonTransparent;
transparentSettings.rendererConfiguration = config;
var transparentFilterSettings = new FilterRenderersSettings(true)
{
renderQueueRange = RenderQueueRange.transparent
};
context.DrawRenderers(m_CullResults.visibleRenderers, ref transparentSettings, transparentFilterSettings);
}
private void BuildShadowSettings()
{
m_ShadowSettings = ShadowSettings.Default;
m_ShadowSettings.directionalLightCascadeCount = m_Asset.CascadeCount;
m_ShadowSettings.shadowAtlasWidth = m_Asset.ShadowAtlasResolution;
m_ShadowSettings.shadowAtlasHeight = m_Asset.ShadowAtlasResolution;
m_ShadowSettings.maxShadowDistance = m_Asset.ShadowDistance;
switch (m_ShadowSettings.directionalLightCascadeCount)
{
case 1:
m_ShadowSettings.directionalLightCascades = new Vector3(1.0f, 0.0f, 0.0f);
break;
case 2:
m_ShadowSettings.directionalLightCascades = new Vector3(m_Asset.Cascade2Split, 1.0f, 0.0f);
break;
default:
m_ShadowSettings.directionalLightCascades = m_Asset.Cascade4Split;
break;
}
}
private void SetupFrameRendering(out FrameRenderingConfiguration configuration)
{
configuration = (XRSettings.enabled) ? FrameRenderingConfiguration.Stereo : FrameRenderingConfiguration.None;
if (XRSettings.enabled && XRSettings.eyeTextureDesc.dimension == TextureDimension.Tex2DArray)
m_IntermediateTextureArray = true;
else
m_IntermediateTextureArray = false;
bool intermediateTexture = m_CurrCamera.targetTexture != null || m_CurrCamera.cameraType == CameraType.SceneView ||
m_Asset.RenderScale < 1.0f || m_CurrCamera.allowHDR;
m_ColorFormat = m_CurrCamera.allowHDR ? RenderTextureFormat.ARGBHalf : RenderTextureFormat.ARGB32;
m_CameraPostProcessLayer = m_CurrCamera.GetComponent<PostProcessLayer>();
bool postProcessEnabled = m_CameraPostProcessLayer != null && m_CameraPostProcessLayer.enabled;
if (postProcessEnabled || m_Asset.SupportsSoftParticles)
{
configuration |= FrameRenderingConfiguration.RequireDepth;
intermediateTexture = true;
if (postProcessEnabled)
configuration |= FrameRenderingConfiguration.PostProcess;
}
// When post process or soft particles are enabled we disable msaa due to lack of depth resolve
// One can still use PostFX AA
else if (m_CurrCamera.allowMSAA && m_Asset.MSAASampleCount > 1)
{
configuration |= FrameRenderingConfiguration.Msaa;
intermediateTexture = !LightweightUtils.PlatformSupportsMSAABackBuffer();
}
Rect cameraRect = m_CurrCamera.rect;
if (cameraRect.x > 0.0f || cameraRect.y > 0.0f || cameraRect.width < 1.0f || cameraRect.height < 1.0f)
intermediateTexture = true;
else
configuration |= FrameRenderingConfiguration.DefaultViewport;
if (intermediateTexture)
configuration |= FrameRenderingConfiguration.IntermediateTexture;
}
private void SetupIntermediateResources(FrameRenderingConfiguration renderingConfig, ref ScriptableRenderContext context)
{
CommandBuffer cmd = CommandBufferPool.Get("Setup Intermediate Resources");
float renderScale = (m_CurrCamera.cameraType == CameraType.Game) ? m_Asset.RenderScale : 1.0f;
int rtWidth = (int)((float)m_CurrCamera.pixelWidth * renderScale);
int rtHeight = (int)((float)m_CurrCamera.pixelHeight * renderScale);
int msaaSamples = (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.Msaa)) ? m_Asset.MSAASampleCount : 1;
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.IntermediateTexture))
{
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.Stereo))
{
RenderTextureDescriptor rtDesc = new RenderTextureDescriptor();
rtDesc = XRSettings.eyeTextureDesc;
rtDesc.colorFormat = m_ColorFormat;
rtDesc.msaaSamples = msaaSamples;
cmd.GetTemporaryRT(m_CameraColorTexture, rtDesc, FilterMode.Bilinear);
}
else if (m_CurrCamera.targetTexture == null)
{
cmd.GetTemporaryRT(m_CameraColorTexture, rtWidth, rtHeight, kCameraDepthBufferBits,
FilterMode.Bilinear, m_ColorFormat, RenderTextureReadWrite.Default, msaaSamples);
}
}
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.RequireDepth))
{
cmd.GetTemporaryRT(m_CameraDepthTexture, rtWidth, rtHeight, kCameraDepthBufferBits, FilterMode.Bilinear, RenderTextureFormat.Depth);
if (m_Asset.SupportsSoftParticles)
cmd.GetTemporaryRT(m_CameraCopyDepthTexture, rtWidth, rtHeight, kCameraDepthBufferBits, FilterMode.Bilinear, RenderTextureFormat.Depth);
}
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
}
private void SetupShaderConstants(VisibleLight[] visibleLights, ref ScriptableRenderContext context, ref LightData lightData)
{
CommandBuffer cmd = CommandBufferPool.Get("SetupShaderConstants");
SetupShaderLightConstants(cmd, visibleLights, ref lightData);
SetShaderKeywords(cmd, ref lightData, visibleLights);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
}
private void InitializeLightData(VisibleLight[] visibleLights, out LightData lightData)
{
int visibleLightsCount = visibleLights.Length;
m_SortedLightIndexMap.Clear();
lightData.shadowsRendered = false;
if (visibleLightsCount <= 1)
{
lightData.mainLightIndex = GetMainLight(visibleLights);
lightData.pixelAdditionalLightsCount = 0;
lightData.totalAdditionalLightsCount = 0;
return;
}
// We always support at least one per-pixel light, which is main light. Shade objects up to a limit of per-object
// pixel lights defined in the pipeline settings.
int maxSupportedPixelLights = Math.Min(m_Asset.MaxAdditionalPixelLights, kMaxPerObjectAdditionalLights) + 1;
int maxPixelLights = Math.Min(maxSupportedPixelLights, visibleLightsCount);
// If vertex lighting is enabled in the pipeline settings, then we shade the remaining visible lights per-vertex
// up to the maximum amount of per-object lights.
int vertexLights = (m_Asset.SupportsVertexLight) ? kMaxPerObjectAdditionalLights - maxPixelLights - 1: 0;
lightData.mainLightIndex = SortLights(visibleLights);
lightData.pixelAdditionalLightsCount = maxPixelLights - 1;
lightData.totalAdditionalLightsCount = lightData.pixelAdditionalLightsCount + vertexLights;
}
private int SortLights(VisibleLight[] visibleLights)
{
int totalVisibleLights = visibleLights.Length;
Dictionary<int, int> visibleLightsIDMap = new Dictionary<int, int>();
for (int i = 0; i < totalVisibleLights; ++i)
visibleLightsIDMap.Add(visibleLights[i].GetHashCode(), i);
// Sorts light so we have all directionals first, then local lights.
// Directionals are sorted further by shadow, cookie and intensity
// Locals are sorted further by shadow, cookie and distance to camera
m_LightCompararer.CurrCamera = m_CurrCamera;
Array.Sort(visibleLights, m_LightCompararer);
for (int i = 0; i < totalVisibleLights; ++i)
m_SortedLightIndexMap.Add(visibleLightsIDMap[visibleLights[i].GetHashCode()]);
return GetMainLight(visibleLights);
}
// How main light is decided:
// If shadows enabled, main light is always a shadow casting light. Directional has priority over local lights.
// Otherwise directional lights have priority based on cookie support and intensity
// If no directional light in the scene local lights based on cookie support and distance to camera
private int GetMainLight(VisibleLight[] visibleLights)
{
int totalVisibleLights = visibleLights.Length;
bool shadowsEnabled = m_Asset.AreShadowsEnabled();
// Particle system lights have the light property as null. We sort lights so all particles lights
// come last. Therefore, if first light is particle light then all lights are particle lights.
// In this case we have no main light.
if (totalVisibleLights == 0 || visibleLights[0].light == null)
return -1;
// If shadows are supported and the first visible light has shadows then this is main light
if (shadowsEnabled && visibleLights[0].light.shadows != LightShadows.None)
return 0;
// We don't have any directional shadow casting light, skip until we find the first non directional light
int lightIndex = 0;
while (lightIndex < totalVisibleLights && visibleLights[lightIndex].lightType == LightType.Directional)
lightIndex++;
// If first non-directional light has shadows we return it, otherwise we return first light
return (lightIndex < totalVisibleLights && visibleLights[lightIndex].light.shadows != LightShadows.None) ? lightIndex : 0;
}
private void InitializeLightConstants(VisibleLight[] lights, int lightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightSpotDir,
out Vector4 lightAttenuationParams)
{
lightPos = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
lightColor = Color.black;
lightAttenuationParams = new Vector4(0.0f, 1.0f, 0.0f, 0.0f);
lightSpotDir = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
// When no lights are visible, main light will be set to -1.
// In this case we initialize it to default values and return
if (lightIndex < 0)
return;
VisibleLight light = lights[lightIndex];
if (light.lightType == LightType.Directional)
{
Vector4 dir = -light.localToWorld.GetColumn(2);
lightPos = new Vector4(dir.x, dir.y, dir.z, 0.0f);
}
else
{
Vector4 pos = light.localToWorld.GetColumn(3);
lightPos = new Vector4(pos.x, pos.y, pos.z, 1.0f);
}
lightColor = light.finalColor;
float rangeSq = light.range * light.range;
float quadAtten = 0.0f;
if (light.lightType != LightType.Directional)
quadAtten = (m_Asset.AttenuationTexture != null) ? 1.0f : 25.0f / rangeSq;
if (light.lightType == LightType.Spot)
{
Vector4 dir = light.localToWorld.GetColumn(2);
lightSpotDir = new Vector4(-dir.x, -dir.y, -dir.z, 0.0f);
// Spot Attenuation with a linear falloff can be defined as
// (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle)
// This can be rewritten as
// invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle)
// SdotL * invAngleRange + (-cosOuterAngle * invAngleRange)
// If we precompute the terms in a MAD instruction
float spotAngle = Mathf.Deg2Rad * light.spotAngle;
float cosOuterAngle = Mathf.Cos(spotAngle * 0.5f);
float cosInneAngle = Mathf.Cos(spotAngle * 0.25f);
float smoothAngleRange = cosInneAngle - cosOuterAngle;
if (Mathf.Approximately(smoothAngleRange, 0.0f))
smoothAngleRange = 1.0f;
float invAngleRange = 1.0f / smoothAngleRange;
float add = -cosOuterAngle * invAngleRange;
lightAttenuationParams = new Vector4(invAngleRange, add, quadAtten, rangeSq);
}
else
{
lightSpotDir = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
lightAttenuationParams = new Vector4(0.0f, 1.0f, quadAtten, rangeSq);
}
}
private void SetupPerFrameShaderConstants(ref ScriptableRenderContext context)
{
// When glossy reflections are OFF in the shader we set a constant color to use as indirect specular
SphericalHarmonicsL2 ambientSH = RenderSettings.ambientProbe;
Vector4 glossyEnvColor = new Vector4(ambientSH[0, 0], ambientSH[1, 0], ambientSH[2, 0]) * RenderSettings.reflectionIntensity;
CommandBuffer cmd = CommandBufferPool.Get("SetupPerFrameConstants");
cmd.SetGlobalVector(PerFrameBuffer._GlossyEnvironmentColor, glossyEnvColor);
if (m_Asset.AttenuationTexture != null) cmd.SetGlobalTexture(PerFrameBuffer._AttenuationTexture, m_Asset.AttenuationTexture);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release (cmd);
}
private void SetupShaderLightConstants(CommandBuffer cmd, VisibleLight[] lights, ref LightData lightData)
{
// Main light has an optimized shader path for main light. This will benefit games that only care about a single light.
// Lightweight pipeline also supports only a single shadow light, if available it will be the main light.
SetupMainLightConstants(cmd, lights, lightData.mainLightIndex);
if (lightData.shadowsRendered)
SetupShadowShaderConstants(cmd, ref lights[lightData.mainLightIndex], m_ShadowCasterCascadesCount);
if (lightData.totalAdditionalLightsCount > 0)
SetupAdditionalListConstants(cmd, lights, ref lightData);
}
private void SetupMainLightConstants(CommandBuffer cmd, VisibleLight[] lights, int lightIndex)
{
Vector4 lightPos, lightColor, lightSpotDir, lightAttenuationParams;
InitializeLightConstants(lights, lightIndex, out lightPos, out lightColor, out lightSpotDir, out lightAttenuationParams);
cmd.SetGlobalVector(PerCameraBuffer._MainLightPosition, lightPos);
cmd.SetGlobalColor(PerCameraBuffer._MainLightColor, lightColor);
cmd.SetGlobalVector(PerCameraBuffer._MainLightSpotDir, lightSpotDir);
cmd.SetGlobalVector(PerCameraBuffer._MainLightAttenuationParams, lightAttenuationParams);
if (lightIndex >= 0 && LightweightUtils.IsSupportedCookieType(lights[lightIndex].lightType) && lights[lightIndex].light.cookie != null)
{
Matrix4x4 lightCookieMatrix;
LightweightUtils.GetLightCookieMatrix(lights[lightIndex], out lightCookieMatrix);
cmd.SetGlobalTexture(PerCameraBuffer._MainLightCookie, lights[lightIndex].light.cookie);
cmd.SetGlobalMatrix(PerCameraBuffer._WorldToLight, lightCookieMatrix);
}
}
private void SetupAdditionalListConstants(CommandBuffer cmd, VisibleLight[] lights, ref LightData lightData)
{
int additionalLightIndex = 0;
// We need to update per-object light list with the proper map to our global additional light buffer
// First we initialize all lights in the map to -1 to tell the system to discard main light index and
// remaining lights in the scene that don't fit the max additional light buffer (kMaxVisibileAdditionalLights)
int[] perObjectLightIndexMap = m_CullResults.GetLightIndexMap();
for (int i = 0; i < lights.Length; ++i)
perObjectLightIndexMap[i] = -1;
for (int i = 0; i < lights.Length && additionalLightIndex < kMaxVisibleAdditionalLights; ++i)
{
if (i != lightData.mainLightIndex)
{
// The engine performs per-object light culling and initialize 8 light indices into two vec4 constants unity_4LightIndices0 and unity_4LightIndices1.
// In the shader we iterate over each visible light using the indices provided in these constants to index our global light buffer
// ex: first light position would be m_LightPosisitions[unity_4LightIndices[0]];
// However since we sorted the lights we need to tell the engine how to map the original/unsorted indices to our global buffer
// We do it by settings the perObjectLightIndexMap to the appropriate additionalLightIndex.
perObjectLightIndexMap[GetLightUnsortedIndex(i)] = additionalLightIndex;
InitializeLightConstants(lights, i, out m_LightPositions[additionalLightIndex],
out m_LightColors[additionalLightIndex],
out m_LightSpotDirections[additionalLightIndex],
out m_LightAttenuations[additionalLightIndex]);
additionalLightIndex++;
}
}
m_CullResults.SetLightIndexMap(perObjectLightIndexMap);
cmd.SetGlobalVector(PerCameraBuffer._AdditionalLightCount, new Vector4 (lightData.pixelAdditionalLightsCount,
lightData.totalAdditionalLightsCount, 0.0f, 0.0f));
cmd.SetGlobalVectorArray (PerCameraBuffer._AdditionalLightPosition, m_LightPositions);
cmd.SetGlobalVectorArray (PerCameraBuffer._AdditionalLightColor, m_LightColors);
cmd.SetGlobalVectorArray (PerCameraBuffer._AdditionalLightAttenuationParams, m_LightAttenuations);
cmd.SetGlobalVectorArray (PerCameraBuffer._AdditionalLightSpotDir, m_LightSpotDirections);
}
private void SetupShadowShaderConstants(CommandBuffer cmd, ref VisibleLight shadowLight, int cascadeCount)
{
Light light = shadowLight.light;
float bias = light.shadowBias * 0.1f;
float normalBias = light.shadowNormalBias;
float shadowResolution = m_ShadowSlices[0].shadowResolution;
const int maxShadowCascades = 4;
Matrix4x4[] shadowMatrices = new Matrix4x4[maxShadowCascades];
for (int i = 0; i < cascadeCount; ++i)
shadowMatrices[i] = (cascadeCount >= i) ? m_ShadowSlices[i].shadowTransform : Matrix4x4.identity;
// TODO: shadow resolution per cascade in case cascades endup being supported.
float invShadowResolution = 1.0f / shadowResolution;
float[] pcfKernel =
{
-0.5f * invShadowResolution, 0.5f * invShadowResolution,
0.5f * invShadowResolution, 0.5f * invShadowResolution,
-0.5f * invShadowResolution, -0.5f * invShadowResolution,
0.5f * invShadowResolution, -0.5f * invShadowResolution
};
cmd.SetGlobalMatrixArray("_WorldToShadow", shadowMatrices);
cmd.SetGlobalVectorArray("_DirShadowSplitSpheres", m_DirectionalShadowSplitDistances);
cmd.SetGlobalVector("_ShadowData", new Vector4(0.0f, bias, normalBias, 0.0f));
cmd.SetGlobalFloatArray("_PCFKernel", pcfKernel);
}
private void SetShaderKeywords(CommandBuffer cmd, ref LightData lightData, VisibleLight[] visibleLights)
{
int vertexLightsCount = lightData.totalAdditionalLightsCount - lightData.pixelAdditionalLightsCount;
LightweightUtils.SetKeyword(cmd, "_VERTEX_LIGHTS", vertexLightsCount > 0);
int mainLightIndex = lightData.mainLightIndex;
// Currently only directional light cookie is supported
LightweightUtils.SetKeyword(cmd, "_MAIN_LIGHT_COOKIE", mainLightIndex != -1 && LightweightUtils.IsSupportedCookieType(visibleLights[mainLightIndex].lightType) && visibleLights[mainLightIndex].light.cookie != null);
LightweightUtils.SetKeyword (cmd, "_MAIN_DIRECTIONAL_LIGHT", mainLightIndex == -1 || visibleLights[mainLightIndex].lightType == LightType.Directional);
LightweightUtils.SetKeyword (cmd, "_MAIN_SPOT_LIGHT", mainLightIndex != -1 && visibleLights[mainLightIndex].lightType == LightType.Spot);
LightweightUtils.SetKeyword (cmd, "_MAIN_POINT_LIGHT", mainLightIndex != -1 && visibleLights[mainLightIndex].lightType == LightType.Point);
LightweightUtils.SetKeyword(cmd, "_ADDITIONAL_LIGHTS", lightData.totalAdditionalLightsCount > 0);
string[] shadowKeywords = new string[] { "_HARD_SHADOWS", "_SOFT_SHADOWS", "_HARD_SHADOWS_CASCADES", "_SOFT_SHADOWS_CASCADES" };
for (int i = 0; i < shadowKeywords.Length; ++i)
cmd.DisableShaderKeyword(shadowKeywords[i]);
if (m_Asset.AreShadowsEnabled() && lightData.shadowsRendered)
{
int keywordIndex = (int)m_Asset.ShadowSetting - 1;
if (m_Asset.CascadeCount > 1)
keywordIndex += 2;
cmd.EnableShaderKeyword(shadowKeywords[keywordIndex]);
}
LightweightUtils.SetKeyword(cmd, "SOFTPARTICLES_ON", m_Asset.SupportsSoftParticles);
}
private bool RenderShadows(ref CullResults cullResults, ref VisibleLight shadowLight, int shadowLightIndex, ref ScriptableRenderContext context)
{
m_ShadowCasterCascadesCount = m_ShadowSettings.directionalLightCascadeCount;
if (shadowLight.lightType == LightType.Spot)
m_ShadowCasterCascadesCount = 1;
int shadowResolution = GetMaxTileResolutionInAtlas(m_ShadowSettings.shadowAtlasWidth, m_ShadowSettings.shadowAtlasHeight, m_ShadowCasterCascadesCount);
Bounds bounds;
if (!cullResults.GetShadowCasterBounds(shadowLightIndex, out bounds))
return false;
var setRenderTargetCommandBuffer = CommandBufferPool.Get();
setRenderTargetCommandBuffer.name = "Render packed shadows";
setRenderTargetCommandBuffer.GetTemporaryRT(m_ShadowMapTexture, m_ShadowSettings.shadowAtlasWidth,
m_ShadowSettings.shadowAtlasHeight, kShadowDepthBufferBits, FilterMode.Bilinear, RenderTextureFormat.Depth);
setRenderTargetCommandBuffer.SetRenderTarget(m_ShadowMapRT);
setRenderTargetCommandBuffer.ClearRenderTarget(true, true, Color.black);
context.ExecuteCommandBuffer(setRenderTargetCommandBuffer);
CommandBufferPool.Release(setRenderTargetCommandBuffer);
float shadowNearPlane = m_Asset.ShadowNearOffset;
Vector3 splitRatio = m_ShadowSettings.directionalLightCascades;
Matrix4x4 view, proj;
var settings = new DrawShadowsSettings(cullResults, shadowLightIndex);
bool needRendering = false;
if (shadowLight.lightType == LightType.Spot)
{
needRendering = cullResults.ComputeSpotShadowMatricesAndCullingPrimitives(shadowLightIndex, out view, out proj,
out settings.splitData);
if (!needRendering)
return false;
SetupShadowSliceTransform(0, shadowResolution, proj, view);
RenderShadowSlice(ref context, 0, proj, view, settings);
}
else if (shadowLight.lightType == LightType.Directional)
{
for (int cascadeIdx = 0; cascadeIdx < m_ShadowCasterCascadesCount; ++cascadeIdx)
{
needRendering = cullResults.ComputeDirectionalShadowMatricesAndCullingPrimitives(shadowLightIndex,
cascadeIdx, m_ShadowCasterCascadesCount, splitRatio, shadowResolution, shadowNearPlane, out view, out proj,
out settings.splitData);
m_DirectionalShadowSplitDistances[cascadeIdx] = settings.splitData.cullingSphere;
m_DirectionalShadowSplitDistances[cascadeIdx].w *= settings.splitData.cullingSphere.w;
if (!needRendering)
return false;
SetupShadowSliceTransform(cascadeIdx, shadowResolution, proj, view);
RenderShadowSlice(ref context, cascadeIdx, proj, view, settings);
}
}
else
{
Debug.LogWarning("Only spot and directional shadow casters are supported in lightweight pipeline");
return false;
}
return true;
}
private void SetupShadowSliceTransform(int cascadeIndex, int shadowResolution, Matrix4x4 proj, Matrix4x4 view)
{
// Assumes MAX_CASCADES = 4
m_ShadowSlices[cascadeIndex].atlasX = (cascadeIndex % 2) * shadowResolution;
m_ShadowSlices[cascadeIndex].atlasY = (cascadeIndex / 2) * shadowResolution;
m_ShadowSlices[cascadeIndex].shadowResolution = shadowResolution;
m_ShadowSlices[cascadeIndex].shadowTransform = Matrix4x4.identity;
var matScaleBias = Matrix4x4.identity;
matScaleBias.m00 = 0.5f;
matScaleBias.m11 = 0.5f;
matScaleBias.m22 = 0.5f;
matScaleBias.m03 = 0.5f;
matScaleBias.m23 = 0.5f;
matScaleBias.m13 = 0.5f;
// Later down the pipeline the proj matrix will be scaled to reverse-z in case of DX.
// We need account for that scale in the shadowTransform.
if (SystemInfo.usesReversedZBuffer)
matScaleBias.m22 = -0.5f;
var matTile = Matrix4x4.identity;
matTile.m00 = (float)m_ShadowSlices[cascadeIndex].shadowResolution /
(float)m_ShadowSettings.shadowAtlasWidth;
matTile.m11 = (float)m_ShadowSlices[cascadeIndex].shadowResolution /
(float)m_ShadowSettings.shadowAtlasHeight;
matTile.m03 = (float)m_ShadowSlices[cascadeIndex].atlasX / (float)m_ShadowSettings.shadowAtlasWidth;
matTile.m13 = (float)m_ShadowSlices[cascadeIndex].atlasY / (float)m_ShadowSettings.shadowAtlasHeight;
m_ShadowSlices[cascadeIndex].shadowTransform = matTile * matScaleBias * proj * view;
}
private void RenderShadowSlice(ref ScriptableRenderContext context, int cascadeIndex,
Matrix4x4 proj, Matrix4x4 view, DrawShadowsSettings settings)
{
var buffer = CommandBufferPool.Get("Prepare Shadowmap Slice");
buffer.SetViewport(new Rect(m_ShadowSlices[cascadeIndex].atlasX, m_ShadowSlices[cascadeIndex].atlasY,
m_ShadowSlices[cascadeIndex].shadowResolution, m_ShadowSlices[cascadeIndex].shadowResolution));
buffer.SetViewProjectionMatrices(view, proj);
context.ExecuteCommandBuffer(buffer);
context.DrawShadows(ref settings);
CommandBufferPool.Release(buffer);
}
private int GetMaxTileResolutionInAtlas(int atlasWidth, int atlasHeight, int tileCount)
{
int resolution = Mathf.Min(atlasWidth, atlasHeight);
if (tileCount > Mathf.Log(resolution))
{
Debug.LogError(
String.Format(
"Cannot fit {0} tiles into current shadowmap atlas of size ({1}, {2}). ShadowMap Resolution set to zero.",
tileCount, atlasWidth, atlasHeight));
return 0;
}
int currentTileCount = atlasWidth / resolution * atlasHeight / resolution;
while (currentTileCount < tileCount)
{
resolution = resolution >> 1;
currentTileCount = atlasWidth / resolution * atlasHeight / resolution;
}
return resolution;
}
private void BeginForwardRendering(ref ScriptableRenderContext context, FrameRenderingConfiguration renderingConfig)
{
RenderTargetIdentifier colorRT = BuiltinRenderTextureType.CameraTarget;
RenderTargetIdentifier depthRT = BuiltinRenderTextureType.None;
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.Stereo))
context.StartMultiEye(m_CurrCamera);
CommandBuffer cmd = CommandBufferPool.Get("SetCameraRenderTarget");
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.IntermediateTexture))
{
if (m_CurrCamera.targetTexture == null)
colorRT = m_CameraColorRT;
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.RequireDepth))
depthRT = m_CameraDepthRT;
}
SetupRenderTargets(cmd, colorRT, depthRT);
// Clear RenderTarget to avoid tile initialization on mobile GPUs
// https://community.arm.com/graphics/b/blog/posts/mali-performance-2-how-to-correctly-handle-framebuffers
if (m_CurrCamera.clearFlags != CameraClearFlags.Nothing)
{
bool clearDepth = (m_CurrCamera.clearFlags != CameraClearFlags.Nothing);
bool clearColor = (m_CurrCamera.clearFlags == CameraClearFlags.Color || m_CurrCamera.clearFlags == CameraClearFlags.Skybox);
cmd.ClearRenderTarget(clearDepth, clearColor, m_CurrCamera.backgroundColor.linear);
}
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
}
private void EndForwardRendering(ref ScriptableRenderContext context, FrameRenderingConfiguration renderingConfig)
{
// No additional rendering needs to be done if this is an offscren rendering camera (unless camera is scene view)
if (m_CurrCamera.targetTexture != null && m_CurrCamera.cameraType != CameraType.SceneView)
return;
var cmd = CommandBufferPool.Get("Blit");
if (m_IntermediateTextureArray)
{
cmd.SetRenderTarget(BuiltinRenderTextureType.CameraTarget, 0, CubemapFace.Unknown, -1);
cmd.Blit(m_CameraColorRT, BuiltinRenderTextureType.CurrentActive);
}
else if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.IntermediateTexture))
{
// If PostProcessing is enabled, it is already blit to CameraTarget.
if (!LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.PostProcess))
Blit(cmd, renderingConfig, BuiltinRenderTextureType.CurrentActive, BuiltinRenderTextureType.CameraTarget);
}
SetupRenderTargets(cmd, BuiltinRenderTextureType.CameraTarget, BuiltinRenderTextureType.None);
context.ExecuteCommandBuffer(cmd);
CommandBufferPool.Release(cmd);
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.Stereo))
{
context.StopMultiEye(m_CurrCamera);
context.StereoEndRender(m_CurrCamera);
}
}
RendererConfiguration GetRendererSettings(ref LightData lightData)
{
RendererConfiguration settings = RendererConfiguration.PerObjectReflectionProbes | RendererConfiguration.PerObjectLightmaps | RendererConfiguration.PerObjectLightProbe;
if (lightData.totalAdditionalLightsCount > 0)
settings |= RendererConfiguration.PerObjectLightIndices8;
return settings;
}
private void SetupRenderTargets(CommandBuffer cmd, RenderTargetIdentifier colorRT, RenderTargetIdentifier depthRT)
{
int depthSlice = (m_IntermediateTextureArray) ? -1 : 0;
if (depthRT != BuiltinRenderTextureType.None)
cmd.SetRenderTarget(colorRT, depthRT, 0, CubemapFace.Unknown, depthSlice);
else
cmd.SetRenderTarget(colorRT, 0, CubemapFace.Unknown, depthSlice);
}
private void RenderPostProcess(CommandBuffer cmd, bool opaqueOnly)
{
m_PostProcessRenderContext.Reset();
m_PostProcessRenderContext.camera = m_CurrCamera;
m_PostProcessRenderContext.source = BuiltinRenderTextureType.CurrentActive;
m_PostProcessRenderContext.sourceFormat = m_ColorFormat;
m_PostProcessRenderContext.destination = BuiltinRenderTextureType.CameraTarget;
m_PostProcessRenderContext.command = cmd;
m_PostProcessRenderContext.flip = true;
if (opaqueOnly)
m_CameraPostProcessLayer.RenderOpaqueOnly(m_PostProcessRenderContext);
else
m_CameraPostProcessLayer.Render(m_PostProcessRenderContext);
}
private int GetLightUnsortedIndex(int index)
{
Debug.Assert(index >= 0 && index < m_SortedLightIndexMap.Count, "Invalid index while accessing light index map. If you only have a single light in scene you should not try to map indices");
return m_SortedLightIndexMap[index];
}
private void Blit(CommandBuffer cmd, FrameRenderingConfiguration renderingConfig, RenderTargetIdentifier sourceRT, RenderTargetIdentifier destRT, Material material = null)
{
if (LightweightUtils.HasFlag(renderingConfig, FrameRenderingConfiguration.DefaultViewport))
{
cmd.Blit(sourceRT, destRT, material);
}
else
{
if (m_BlitQuad == null)
m_BlitQuad = LightweightUtils.CreateQuadMesh(false);
cmd.SetGlobalTexture(m_BlitTexID, sourceRT);
cmd.SetRenderTarget(destRT);
cmd.SetViewport(m_CurrCamera.pixelRect);
cmd.DrawMesh(m_BlitQuad, Matrix4x4.identity, m_BlitMaterial);
}
}
private void CopyTexture(CommandBuffer cmd, RenderTargetIdentifier sourceRT, RenderTargetIdentifier destRT)
{
if (m_CopyTextureSupport != CopyTextureSupport.None)
cmd.CopyTexture(m_CameraDepthRT, m_CameraCopyDepthRT);
else
cmd.Blit(m_CameraDepthRT, m_CameraCopyDepthRT, m_CopyDepthMaterial);
}
}
}