您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

235 行
12 KiB

#ifndef UNITY_MATERIAL_INCLUDED
#define UNITY_MATERIAL_INCLUDED
#include "../../Core/ShaderLibrary/Color.hlsl"
#include "../../Core/ShaderLibrary/Packing.hlsl"
#include "../../Core/ShaderLibrary/BSDF.hlsl"
#include "../../Core/ShaderLibrary/Debug.hlsl"
#include "../../Core/ShaderLibrary/GeometricTools.hlsl"
#include "../../Core/ShaderLibrary/CommonMaterial.hlsl"
#include "../../Core/ShaderLibrary/EntityLighting.hlsl"
#include "../../Core/ShaderLibrary/ImageBasedLighting.hlsl"
#include "../Sky/AtmosphericScattering/AtmosphericScattering.hlsl"
// Guidelines for Material Keyword.
// There is a set of Material Keyword that a HD shaders must define (or not define). We call them system KeyWord.
// .Shader need to define:
// - _SURFACE_TYPE_TRANSPARENT if they use a transparent material
// - _BLENDMODE_ALPHA, _BLENDMODE_ADD, _BLENDMODE_MULTIPLY, _BLENDMODE_PRE_MULTIPLY for blend mode
// - _BLENDMODE_PRESERVE_SPECULAR_LIGHTING for correct lighting when blend mode are use with a Lit material
// - _ENABLE_FOG_ON_TRANSPARENT if fog is enable on transparent surface
//-----------------------------------------------------------------------------
// ApplyBlendMode function
//-----------------------------------------------------------------------------
float4 ApplyBlendMode(float3 diffuseLighting, float3 specularLighting, float opacity)
{
// ref: http://advances.realtimerendering.com/other/2016/naughty_dog/NaughtyDog_TechArt_Final.pdf
// Lit transparent object should have reflection and tramission.
// Transmission when not using "rough refraction mode" (with fetch in preblured background) is handled with blend mode.
// However reflection should not be affected by blend mode. For example a glass should still display reflection and not lose the highlight when blend
// This is the purpose of following function, "Cancel" the blend mode effect on the specular lighting but not on the diffuse lighting
#ifdef _BLENDMODE_PRESERVE_SPECULAR_LIGHTING
// In the case of _BLENDMODE_ALPHA the code should be float4(diffuseLighting + (specularLighting / max(opacity, 0.01)), opacity)
// However this have precision issue when reaching 0, so we change the blend mode and apply src * src_a inside the shader instead
#if defined(_BLENDMODE_ADD) || defined(_BLENDMODE_ALPHA)
return float4(diffuseLighting * opacity + specularLighting, opacity);
#else // defined(_BLENDMODE_MULTIPLY) || defined(_BLENDMODE_PRE_MULTIPLY)
return float4(diffuseLighting + specularLighting, opacity);
#endif
#else
#if defined(_BLENDMODE_ADD) || defined(_BLENDMODE_ALPHA)
return float4((diffuseLighting + specularLighting) * opacity, opacity);
#else // defined(_BLENDMODE_MULTIPLY) || defined(_BLENDMODE_PRE_MULTIPLY)
return float4(diffuseLighting + specularLighting, opacity);
#endif
#endif
}
float4 ApplyBlendMode(float3 color, float opacity)
{
return ApplyBlendMode(color, float3(0.0, 0.0, 0.0), opacity);
}
//-----------------------------------------------------------------------------
// Fog sampling function for materials
//-----------------------------------------------------------------------------
// Used for transparent object. input color is color + alpha of the original transparent pixel.
// This must be call after ApplyBlendMode to work correctly
float4 EvaluateAtmosphericScattering(PositionInputs posInput, float4 inputColor)
{
float4 result = inputColor;
#ifdef _ENABLE_FOG_ON_TRANSPARENT
float4 fog = EvaluateAtmosphericScattering(posInput);
#if defined(_BLENDMODE_ALPHA)
// Regular alpha blend need to multiply fog color by opacity (as we do src * src_a inside the shader)
result.rgb = lerp(result.rgb, fog.rgb * result.a, fog.a);
#elif defined(_BLENDMODE_ADD)
// For additive, we just need to fade to black with fog density (black + background == background color == fog color)
result.rgb = result.rgb * (1.0 - fog.a);
#elif defined(_BLENDMODE_MULTIPLY)
// For multiplicative, we just need to fade to white with fog density (white * background == background color == fog color)
result.rgb = lerp(result.rgb, float3(1.0, 1.0, 1.0), fog.a);
#elif defined(_BLENDMODE_PRE_MULTIPLY)
// For Pre-Multiplied Alpha Blend, we need to multiply fog color by src alpha to match regular alpha blending formula.
result.rgb = lerp(result.rgb, fog.rgb * result.a, fog.a);
#endif
#else
// Evaluation of fog for opaque objects is currently done in a full screen pass independent from any material parameters.
// but this funtction is called in generic forward shader code so we need it to be neutral in this case.
#endif
return result;
}
//-----------------------------------------------------------------------------
// BuiltinData
//-----------------------------------------------------------------------------
#include "Builtin/BuiltinData.hlsl"
//-----------------------------------------------------------------------------
// Material definition
//-----------------------------------------------------------------------------
// Here we include all the different lighting model supported by the renderloop based on define done in .shader
// Only one deferred layout is allowed for a HDRenderPipeline, this will be detect by the redefinition of GBUFFERMATERIAL_COUNT
// If GBUFFERMATERIAL_COUNT is define two time, the shaders will not compile
#ifdef UNITY_MATERIAL_LIT
#include "Lit/Lit.hlsl"
#elif defined(UNITY_MATERIAL_UNLIT)
#include "Unlit/Unlit.hlsl"
#elif defined(UNITY_MATERIAL_IRIDESCENCE)
//#include "Iridescence/Iridescence.hlsl"
#endif
//-----------------------------------------------------------------------------
// Define for GBuffer management
//-----------------------------------------------------------------------------
#ifdef GBUFFERMATERIAL_COUNT
#if GBUFFERMATERIAL_COUNT == 2
#define OUTPUT_GBUFFER(NAME) \
out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \
out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1
#define DECLARE_GBUFFER_TEXTURE(NAME) \
TEXTURE2D(MERGE_NAME(NAME, 0)); \
TEXTURE2D(MERGE_NAME(NAME, 1));
#define FETCH_GBUFFER(NAME, TEX, unCoord2) \
GBufferType0 MERGE_NAME(NAME, 0) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 0), unCoord2); \
GBufferType1 MERGE_NAME(NAME, 1) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 1), unCoord2);
#define ENCODE_INTO_GBUFFER(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, NAME) EncodeIntoGBuffer(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, MERGE_NAME(NAME,0), MERGE_NAME(NAME,1))
#define DECODE_FROM_GBUFFER(NAME, FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING) DecodeFromGBuffer(MERGE_NAME(NAME,0), MERGE_NAME(NAME,1), FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING)
#define MATERIAL_FEATURE_FLAGS_FROM_GBUFFER(NAME) MaterialFeatureFlagsFromGBuffer(MERGE_NAME(NAME,0), MERGE_NAME(NAME,1))
#if SHADEROPTIONS_VELOCITY_IN_GBUFFER
#define OUTPUT_GBUFFER_VELOCITY(NAME) ,out float4 NAME : SV_Target2
#endif
#elif GBUFFERMATERIAL_COUNT == 3
#define OUTPUT_GBUFFER(NAME) \
out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \
out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \
out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2
#define DECLARE_GBUFFER_TEXTURE(NAME) \
TEXTURE2D(MERGE_NAME(NAME, 0)); \
TEXTURE2D(MERGE_NAME(NAME, 1)); \
TEXTURE2D(MERGE_NAME(NAME, 2));
#define FETCH_GBUFFER(NAME, TEX, unCoord2) \
GBufferType0 MERGE_NAME(NAME, 0) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 0), unCoord2); \
GBufferType1 MERGE_NAME(NAME, 1) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 1), unCoord2); \
GBufferType2 MERGE_NAME(NAME, 2) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 2), unCoord2);
#define ENCODE_INTO_GBUFFER(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, NAME) EncodeIntoGBuffer(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, MERGE_NAME(NAME,0), MERGE_NAME(NAME,1), MERGE_NAME(NAME,2))
#define DECODE_FROM_GBUFFER(NAME, FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING) DecodeFromGBuffer(MERGE_NAME(NAME,0), MERGE_NAME(NAME,1), MERGE_NAME(NAME,2), FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING)
#define MATERIAL_FEATURE_FLAGS_FROM_GBUFFER(NAME) MaterialFeatureFlagsFromGBuffer(MERGE_NAME(NAME,0), MERGE_NAME(NAME,1), MERGE_NAME(NAME,2))
#if SHADEROPTIONS_VELOCITY_IN_GBUFFER
#define OUTPUT_GBUFFER_VELOCITY(NAME) ,out float4 NAME : SV_Target3
#endif
#elif GBUFFERMATERIAL_COUNT == 4
#define OUTPUT_GBUFFER(NAME) \
out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \
out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \
out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2, \
out GBufferType3 MERGE_NAME(NAME, 3) : SV_Target3
#define DECLARE_GBUFFER_TEXTURE(NAME) \
TEXTURE2D(MERGE_NAME(NAME, 0)); \
TEXTURE2D(MERGE_NAME(NAME, 1)); \
TEXTURE2D(MERGE_NAME(NAME, 2)); \
TEXTURE2D(MERGE_NAME(NAME, 3));
#define FETCH_GBUFFER(NAME, TEX, unCoord2) \
GBufferType0 MERGE_NAME(NAME, 0) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 0), unCoord2); \
GBufferType1 MERGE_NAME(NAME, 1) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 1), unCoord2); \
GBufferType2 MERGE_NAME(NAME, 2) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 2), unCoord2); \
GBufferType3 MERGE_NAME(NAME, 3) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 3), unCoord2);
#define ENCODE_INTO_GBUFFER(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, NAME) EncodeIntoGBuffer(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3))
#define DECODE_FROM_GBUFFER(NAME, FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING) DecodeFromGBuffer(MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING)
#define MATERIAL_FEATURE_FLAGS_FROM_GBUFFER(NAME) MaterialFeatureFlagsFromGBuffer(MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3))
#if SHADEROPTIONS_VELOCITY_IN_GBUFFER
#define OUTPUT_GBUFFER_VELOCITY(NAME) ,out float4 NAME : SV_Target4
#endif
#elif GBUFFERMATERIAL_COUNT == 5
#define OUTPUT_GBUFFER(NAME) \
out GBufferType0 MERGE_NAME(NAME, 0) : SV_Target0, \
out GBufferType1 MERGE_NAME(NAME, 1) : SV_Target1, \
out GBufferType2 MERGE_NAME(NAME, 2) : SV_Target2, \
out GBufferType3 MERGE_NAME(NAME, 3) : SV_Target3, \
out GBufferType4 MERGE_NAME(NAME, 4) : SV_Target4
#define DECLARE_GBUFFER_TEXTURE(NAME) \
TEXTURE2D(MERGE_NAME(NAME, 0)); \
TEXTURE2D(MERGE_NAME(NAME, 1)); \
TEXTURE2D(MERGE_NAME(NAME, 2)); \
TEXTURE2D(MERGE_NAME(NAME, 3)); \
TEXTURE2D(MERGE_NAME(NAME, 4));
#define FETCH_GBUFFER(NAME, TEX, unCoord2) \
GBufferType0 MERGE_NAME(NAME, 0) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 0), unCoord2); \
GBufferType1 MERGE_NAME(NAME, 1) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 1), unCoord2); \
GBufferType2 MERGE_NAME(NAME, 2) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 2), unCoord2); \
GBufferType3 MERGE_NAME(NAME, 3) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 3), unCoord2); \
GBufferType4 MERGE_NAME(NAME, 4) = LOAD_TEXTURE2D(MERGE_NAME(TEX, 4), unCoord2);
#define ENCODE_INTO_GBUFFER(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, NAME) EncodeIntoGBuffer(SURFACE_DATA, BAKE_DIFFUSE_LIGHTING, MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), MERGE_NAME(NAME, 4))
#define DECODE_FROM_GBUFFER(NAME, FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING) DecodeFromGBuffer(MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), MERGE_NAME(NAME, 4), FEATURE_FLAGS, BSDF_DATA, BAKE_DIFFUSE_LIGHTING)
#define MATERIAL_FEATURE_FLAGS_FROM_GBUFFER(NAME) MaterialFeatureFlagsFromGBuffer(MERGE_NAME(NAME, 0), MERGE_NAME(NAME, 1), MERGE_NAME(NAME, 2), MERGE_NAME(NAME, 3), MERGE_NAME(NAME, 4))
#if SHADEROPTIONS_VELOCITY_IN_GBUFFER
#define OUTPUT_GBUFFER_VELOCITY(NAME) ,out float4 NAME : SV_Target5
#endif
#endif
#if SHADEROPTIONS_VELOCITY_IN_GBUFFER
#define ENCODE_VELOCITY_INTO_GBUFFER(VELOCITY, NAME) EncodeVelocity(VELOCITY, NAME)
#else
#define OUTPUT_GBUFFER_VELOCITY(NAME)
#define ENCODE_VELOCITY_INTO_GBUFFER(VELOCITY, NAME)
#endif
#endif // #ifdef GBUFFERMATERIAL_COUNT
#endif // UNITY_MATERIAL_INCLUDED