您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

258 行
12 KiB

#include "CoreRP/ShaderLibrary/Macros.hlsl"
//-----------------------------------------------------------------------------
// LightLoop
// ----------------------------------------------------------------------------
void ApplyDebug(LightLoopContext lightLoopContext, float3 positionWS, inout float3 diffuseLighting, inout float3 specularLighting)
{
#ifdef DEBUG_DISPLAY
if (_DebugLightingMode == DEBUGLIGHTINGMODE_DIFFUSE_LIGHTING)
{
specularLighting = float3(0.0, 0.0, 0.0); // Disable specular lighting
}
else if (_DebugLightingMode == DEBUGLIGHTINGMODE_SPECULAR_LIGHTING)
{
diffuseLighting = float3(0.0, 0.0, 0.0); // Disable diffuse lighting
}
else if (_DebugLightingMode == DEBUGLIGHTINGMODE_LUX_METER)
{
specularLighting = float3(0.0, 0.0, 0.0); // Disable specular lighting
// Take the luminance
diffuseLighting = Luminance(diffuseLighting).xxx;
}
else if (_DebugLightingMode == DEBUGLIGHTINGMODE_VISUALIZE_CASCADE)
{
specularLighting = float3(0.0, 0.0, 0.0);
const float3 s_CascadeColors[] = {
float3(1.0, 0.0, 0.0),
float3(0.0, 1.0, 0.0),
float3(0.0, 0.0, 1.0),
float3(1.0, 1.0, 0.0),
float3(1.0, 1.0, 1.0)
};
diffuseLighting = float3(1.0, 1.0, 1.0);
if (_DirectionalLightCount > 0)
{
int shadowIdx = _DirectionalLightDatas[0].shadowIndex;
float shadow = GetDirectionalShadowAttenuation(lightLoopContext.shadowContext, positionWS, float3(0.0, 1.0, 0.0 ), shadowIdx, -_DirectionalLightDatas[0].forward, float2(0.0, 0.0));
uint payloadOffset;
real alpha;
int cascadeCount;
int shadowSplitIndex = EvalShadow_GetSplitIndex(lightLoopContext.shadowContext, shadowIdx, positionWS, payloadOffset, alpha, cascadeCount);
if (shadowSplitIndex >= 0)
{
diffuseLighting = lerp(s_CascadeColors[shadowSplitIndex], s_CascadeColors[shadowSplitIndex+1], alpha) * shadow;
}
}
}
// We always apply exposure when in debug mode. The exposure value will be at a neutral 0.0 when not needed.
diffuseLighting *= exp2(_DebugExposure);
specularLighting *= exp2(_DebugExposure);
#endif
}
// bakeDiffuseLighting is part of the prototype so a user is able to implement a "base pass" with GI and multipass direct light (aka old unity rendering path)
void LightLoop( float3 V, PositionInputs posInput, PreLightData preLightData, BSDFData bsdfData, BakeLightingData bakeLightingData, uint featureFlags,
out float3 diffuseLighting,
out float3 specularLighting)
{
LightLoopContext context;
context.sampleReflection = 0;
context.shadowContext = InitShadowContext();
//We always fetch the screen space shadow texture, it is a 1x1 white texture if deferred directional shadow and/or contact shadow are disabled
context.shadowContext.contactShadow = LOAD_TEXTURE2D(_DeferredShadowTexture, posInput.positionSS).y;
// This struct is define in the material. the Lightloop must not access it
// PostEvaluateBSDF call at the end will convert Lighting to diffuse and specular lighting
AggregateLighting aggregateLighting;
ZERO_INITIALIZE(AggregateLighting, aggregateLighting); // LightLoop is in charge of initializing the struct
uint i = 0; // Declare once to avoid the D3D11 compiler warning.
if (featureFlags & LIGHTFEATUREFLAGS_DIRECTIONAL)
{
for (i = 0; i < _DirectionalLightCount; ++i)
{
DirectLighting lighting = EvaluateBSDF_Directional(context, V, posInput, preLightData, _DirectionalLightDatas[i], bsdfData, bakeLightingData);
AccumulateDirectLighting(lighting, aggregateLighting);
}
}
if (featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL)
{
uint lightCount, lightStart;
#ifdef LIGHTLOOP_TILE_PASS
GetCountAndStart(posInput, LIGHTCATEGORY_PUNCTUAL, lightStart, lightCount);
#else
lightCount = _PunctualLightCount;
lightStart = 0;
#endif
for (i = 0; i < lightCount; i++)
{
LightData lightData = FetchLight(lightStart, i);
DirectLighting lighting = EvaluateBSDF_Punctual(context, V, posInput, preLightData, lightData, bsdfData, bakeLightingData);
AccumulateDirectLighting(lighting, aggregateLighting);
}
}
if (featureFlags & LIGHTFEATUREFLAGS_AREA)
{
uint lightCount, lightStart;
#ifdef LIGHTLOOP_TILE_PASS
GetCountAndStart(posInput, LIGHTCATEGORY_AREA, lightStart, lightCount);
#else
lightCount = _AreaLightCount;
lightStart = _PunctualLightCount;
#endif
// COMPILER BEHAVIOR WARNING!
// If rectangle lights are before line lights, the compiler will duplicate light matrices in VGPR because they are used differently between the two types of lights.
// By keeping line lights first we avoid this behavior and save substantial register pressure.
// TODO: This is based on the current Lit.shader and can be different for any other way of implementing area lights, how to be generic and ensure performance ?
if (lightCount > 0)
{
i = 0;
uint last = lightCount - 1;
LightData lightData = FetchLight(lightStart, i);
while (i <= last && lightData.lightType == GPULIGHTTYPE_LINE)
{
lightData.lightType = GPULIGHTTYPE_LINE; // Enforce constant propagation
DirectLighting lighting = EvaluateBSDF_Area(context, V, posInput, preLightData, lightData, bsdfData, bakeLightingData);
AccumulateDirectLighting(lighting, aggregateLighting);
lightData = FetchLight(lightStart, min(++i, last));
}
while (i <= last) // GPULIGHTTYPE_RECTANGLE
{
lightData.lightType = GPULIGHTTYPE_RECTANGLE; // Enforce constant propagation
DirectLighting lighting = EvaluateBSDF_Area(context, V, posInput, preLightData, lightData, bsdfData, bakeLightingData);
AccumulateDirectLighting(lighting, aggregateLighting);
lightData = FetchLight(lightStart, min(++i, last));
}
}
}
// Define macro for a better understanding of the loop
#define EVALUATE_BSDF_ENV(envLightData, TYPE, type) \
IndirectLighting lighting = EvaluateBSDF_Env(context, V, posInput, preLightData, envLightData, bsdfData, envLightData.influenceShapeType, MERGE_NAME(GPUIMAGEBASEDLIGHTINGTYPE_, TYPE), MERGE_NAME(type, HierarchyWeight)); \
AccumulateIndirectLighting(lighting, aggregateLighting);
// First loop iteration
if (featureFlags & (LIGHTFEATUREFLAGS_ENV | LIGHTFEATUREFLAGS_SKY | LIGHTFEATUREFLAGS_SSREFRACTION | LIGHTFEATUREFLAGS_SSREFLECTION))
{
float reflectionHierarchyWeight = 0.0; // Max: 1.0
float refractionHierarchyWeight = 0.0; // Max: 1.0
uint envLightStart, envLightCount;
// Fetch first env light to provide the scene proxy for screen space computation
#ifdef LIGHTLOOP_TILE_PASS
GetCountAndStart(posInput, LIGHTCATEGORY_ENV, envLightStart, envLightCount);
#else
envLightCount = _EnvLightCount;
envLightStart = 0;
#endif
// Reflection / Refraction hierarchy is
// 1. Screen Space Refraction / Reflection
// 2. Environment Reflection / Refraction
// 3. Sky Reflection / Refraction
EnvLightData envLightData;
if (envLightCount > 0)
{
envLightData = FetchEnvLight(envLightStart, 0);
}
else
{
envLightData = InitSkyEnvLightData(0);
}
if (featureFlags & LIGHTFEATUREFLAGS_SSREFLECTION)
{
IndirectLighting lighting = EvaluateBSDF_SSLighting( context, V, posInput, preLightData, bsdfData, envLightData,
GPUIMAGEBASEDLIGHTINGTYPE_REFLECTION, reflectionHierarchyWeight);
AccumulateIndirectLighting(lighting, aggregateLighting);
}
if (featureFlags & LIGHTFEATUREFLAGS_SSREFRACTION)
{
IndirectLighting lighting = EvaluateBSDF_SSLighting( context, V, posInput, preLightData, bsdfData, envLightData,
GPUIMAGEBASEDLIGHTINGTYPE_REFRACTION, refractionHierarchyWeight);
AccumulateIndirectLighting(lighting, aggregateLighting);
}
// Reflection probes are sorted by volume (in the increasing order).
if (featureFlags & LIGHTFEATUREFLAGS_ENV)
{
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_REFLECTION_PROBES;
// Note: In case of IBL we are sorted from smaller to bigger projected solid angle bounds. We are not sorted by type so we can't do a 'while' approach like for area light.
for (i = 0; i < envLightCount && reflectionHierarchyWeight < 1.0; ++i)
{
EVALUATE_BSDF_ENV(FetchEnvLight(envLightStart, i), REFLECTION, reflection);
}
// Refraction probe and reflection probe will process exactly the same weight. It will be good for performance to be able to share this computation
// However it is hard to deal with the fact that reflectionHierarchyWeight and refractionHierarchyWeight have not the same values, they are independent
// The refraction probe is rarely used and happen only with sphere shape and high IOR. So we accept the slow path that use more simple code and
// doesn't affect the performance of the reflection which is more important.
// We reuse LIGHTFEATUREFLAGS_SSREFRACTION flag as refraction is mainly base on the screen. Would be a waste to not use screen and only cubemap.
if (featureFlags & LIGHTFEATUREFLAGS_SSREFRACTION)
{
for (i = 0; i < envLightCount && refractionHierarchyWeight < 1.0; ++i)
{
EVALUATE_BSDF_ENV(FetchEnvLight(envLightStart, i), REFRACTION, refraction);
}
}
}
// Only apply the sky IBL if the sky texture is available
if ((featureFlags & LIGHTFEATUREFLAGS_SKY) && _EnvLightSkyEnabled)
{
// The sky is a single cubemap texture separate from the reflection probe texture array (different resolution and compression)
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_SKY;
// The sky data are generated on the fly so the compiler can optimize the code
EnvLightData envLightSky = InitSkyEnvLightData(0);
// Only apply the sky if we haven't yet accumulated enough IBL lighting.
if (reflectionHierarchyWeight < 1.0)
{
EVALUATE_BSDF_ENV(envLightSky, REFLECTION, reflection);
}
if (featureFlags & LIGHTFEATUREFLAGS_SSREFRACTION)
{
if (refractionHierarchyWeight < 1.0)
{
EVALUATE_BSDF_ENV(envLightSky, REFRACTION, refraction);
}
}
}
}
#undef EVALUATE_BSDF_ENV
// Also Apply indiret diffuse (GI)
// PostEvaluateBSDF will perform any operation wanted by the material and sum everything into diffuseLighting and specularLighting
PostEvaluateBSDF( context, V, posInput, preLightData, bsdfData, bakeLightingData, aggregateLighting,
diffuseLighting, specularLighting);
ApplyDebug(context, posInput.positionWS, diffuseLighting, specularLighting);
}