您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

516 行
24 KiB

using System;
namespace UnityEngine.Experimental.Rendering.HDPipeline
{
[GenerateHLSL]
public class DiffusionProfileConstants
{
public const int DIFFUSION_PROFILE_COUNT = 16; // Max. number of profiles, including the slot taken by the neutral profile
public const int DIFFUSION_PROFILE_NEUTRAL_ID = 0; // Does not result in blurring
public const int SSS_N_SAMPLES_NEAR_FIELD = 55; // Used for extreme close ups; must be a Fibonacci number
public const int SSS_N_SAMPLES_FAR_FIELD = 21; // Used at a regular distance; must be a Fibonacci number
public const int SSS_LOD_THRESHOLD = 4; // The LoD threshold of the near-field kernel (in pixels)
// Old SSS Model >>>
public const int SSS_BASIC_N_SAMPLES = 11; // Must be an odd number
public const int SSS_BASIC_DISTANCE_SCALE = 3; // SSS distance units per centimeter
// <<< Old SSS Model
}
[Serializable]
public sealed class DiffusionProfile
{
public enum TexturingMode : uint
{
PreAndPostScatter = 0,
PostScatter = 1
}
public enum TransmissionMode : uint
{
Regular = 0,
ThinObject = 1
}
public string name;
[ColorUsage(false, true)]
public Color scatteringDistance; // Per color channel (no meaningful units)
[ColorUsage(false)]
public Color transmissionTint; // Color, 0 to 1
public TexturingMode texturingMode;
public TransmissionMode transmissionMode;
public Vector2 thicknessRemap; // X = min, Y = max (in millimeters)
public float worldScale; // Size of the world unit in meters
public float ior; // 1.4 for skin (mean ~0.028)
// Old SSS Model >>>
[ColorUsage(false, true)]
public Color scatterDistance1;
[ColorUsage(false, true)]
public Color scatterDistance2;
[Range(0f, 1f)]
public float lerpWeight;
// <<< Old SSS Model
public Vector3 shapeParam { get; private set; } // RGB = shape parameter: S = 1 / D
public float maxRadius { get; private set; } // In millimeters
public Vector2[] filterKernelNearField { get; private set; } // X = radius, Y = reciprocal of the PDF
public Vector2[] filterKernelFarField { get; private set; } // X = radius, Y = reciprocal of the PDF
public Vector4 halfRcpWeightedVariances { get; private set; }
public Vector4[] filterKernelBasic { get; private set; }
public DiffusionProfile(string name)
{
this.name = name;
scatteringDistance = Color.grey;
transmissionTint = Color.white;
texturingMode = TexturingMode.PreAndPostScatter;
transmissionMode = TransmissionMode.ThinObject;
thicknessRemap = new Vector2(0f, 5f);
worldScale = 1f;
ior = 1.4f; // TYpical value for skin specular reflectance
// Old SSS Model >>>
scatterDistance1 = new Color(0.3f, 0.3f, 0.3f, 0f);
scatterDistance2 = new Color(0.5f, 0.5f, 0.5f, 0f);
lerpWeight = 1f;
// <<< Old SSS Model
}
public void Validate()
{
thicknessRemap.y = Mathf.Max(thicknessRemap.y, 0f);
thicknessRemap.x = Mathf.Clamp(thicknessRemap.x, 0f, thicknessRemap.y);
worldScale = Mathf.Max(worldScale, 0.001f);
ior = Mathf.Clamp(ior, 1.0f, 2.0f);
// Old SSS Model >>>
scatterDistance1 = new Color
{
r = Mathf.Max(0.05f, scatterDistance1.r),
g = Mathf.Max(0.05f, scatterDistance1.g),
b = Mathf.Max(0.05f, scatterDistance1.b),
a = 0.0f
};
scatterDistance2 = new Color
{
r = Mathf.Max(0.05f, scatterDistance2.r),
g = Mathf.Max(0.05f, scatterDistance2.g),
b = Mathf.Max(0.05f, scatterDistance2.b),
a = 0f
};
// <<< Old SSS Model
UpdateKernel();
}
// Ref: Approximate Reflectance Profiles for Efficient Subsurface Scattering by Pixar.
public void UpdateKernel()
{
if (filterKernelNearField == null || filterKernelNearField.Length != DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD)
filterKernelNearField = new Vector2[DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD];
if (filterKernelFarField == null || filterKernelFarField.Length != DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD)
filterKernelFarField = new Vector2[DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD];
// Clamp to avoid artifacts.
shapeParam = new Vector3(
1f / Mathf.Max(0.001f, scatteringDistance.r),
1f / Mathf.Max(0.001f, scatteringDistance.g),
1f / Mathf.Max(0.001f, scatteringDistance.b)
);
// We importance sample the color channel with the widest scattering distance.
float s = Mathf.Min(shapeParam.x, shapeParam.y, shapeParam.z);
// Importance sample the normalized diffuse reflectance profile for the computed value of 's'.
// ------------------------------------------------------------------------------------
// R[r, phi, s] = s * (Exp[-r * s] + Exp[-r * s / 3]) / (8 * Pi * r)
// PDF[r, phi, s] = r * R[r, phi, s]
// CDF[r, s] = 1 - 1/4 * Exp[-r * s] - 3/4 * Exp[-r * s / 3]
// ------------------------------------------------------------------------------------
// Importance sample the near field kernel.
for (int i = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD; i < n; i++)
{
float p = (i + 0.5f) * (1f / n);
float r = DisneyProfileCdfInverse(p, s);
// N.b.: computation of normalized weights, and multiplication by the surface albedo
// of the actual geometry is performed at runtime (in the shader).
filterKernelNearField[i].x = r;
filterKernelNearField[i].y = 1f / DisneyProfilePdf(r, s);
}
// Importance sample the far field kernel.
for (int i = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD; i < n; i++)
{
float p = (i + 0.5f) * (1f / n);
float r = DisneyProfileCdfInverse(p, s);
// N.b.: computation of normalized weights, and multiplication by the surface albedo
// of the actual geometry is performed at runtime (in the shader).
filterKernelFarField[i].x = r;
filterKernelFarField[i].y = 1f / DisneyProfilePdf(r, s);
}
maxRadius = filterKernelFarField[DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD - 1].x;
// Old SSS Model >>>
UpdateKernelAndVarianceData();
// <<< Old SSS Model
}
// Old SSS Model >>>
public void UpdateKernelAndVarianceData()
{
const int kNumSamples = DiffusionProfileConstants.SSS_BASIC_N_SAMPLES;
const int kDistanceScale = DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE;
if (filterKernelBasic == null || filterKernelBasic.Length != kNumSamples)
filterKernelBasic = new Vector4[kNumSamples];
// Apply the three-sigma rule, and rescale.
var stdDev1 = ((1f / 3f) * kDistanceScale) * scatterDistance1;
var stdDev2 = ((1f / 3f) * kDistanceScale) * scatterDistance2;
// Our goal is to blur the image using a filter which is represented
// as a product of a linear combination of two normalized 1D Gaussians
// as suggested by Jimenez et al. in "Separable Subsurface Scattering".
// A normalized (i.e. energy-preserving) 1D Gaussian with the mean of 0
// is defined as follows: G1(x, v) = exp(-x * x / (2 * v)) / sqrt(2 * Pi * v),
// where 'v' is variance and 'x' is the radial distance from the origin.
// Using the weight 'w', our 1D and the resulting 2D filters are given as:
// A1(v1, v2, w, x) = G1(x, v1) * (1 - w) + G1(r, v2) * w,
// A2(v1, v2, w, x, y) = A1(v1, v2, w, x) * A1(v1, v2, w, y).
// The resulting filter function is a non-Gaussian PDF.
// It is separable by design, but generally not radially symmetric.
// N.b.: our scattering distance is rather limited. Therefore, in order to allow
// for a greater range of standard deviation values for flatter profiles,
// we rescale the world using 'distanceScale', effectively reducing the SSS
// distance units from centimeters to (1 / distanceScale).
// Find the widest Gaussian across 3 color channels.
float maxStdDev1 = Mathf.Max(stdDev1.r, stdDev1.g, stdDev1.b);
float maxStdDev2 = Mathf.Max(stdDev2.r, stdDev2.g, stdDev2.b);
var weightSum = Vector3.zero;
float step = 1f / (kNumSamples - 1);
// Importance sample the linear combination of two Gaussians.
for (int i = 0; i < kNumSamples; i++)
{
// Generate 'u' on (0, 0.5] and (0.5, 1).
float u = (i <= kNumSamples / 2) ? 0.5f - i * step // The center and to the left
: i * step; // From the center to the right
u = Mathf.Clamp(u, 0.001f, 0.999f);
float pos = GaussianCombinationCdfInverse(u, maxStdDev1, maxStdDev2, lerpWeight);
float pdf = GaussianCombination(pos, maxStdDev1, maxStdDev2, lerpWeight);
Vector3 val;
val.x = GaussianCombination(pos, stdDev1.r, stdDev2.r, lerpWeight);
val.y = GaussianCombination(pos, stdDev1.g, stdDev2.g, lerpWeight);
val.z = GaussianCombination(pos, stdDev1.b, stdDev2.b, lerpWeight);
// We do not divide by 'numSamples' since we will renormalize, anyway.
filterKernelBasic[i].x = val.x * (1 / pdf);
filterKernelBasic[i].y = val.y * (1 / pdf);
filterKernelBasic[i].z = val.z * (1 / pdf);
filterKernelBasic[i].w = pos;
weightSum.x += filterKernelBasic[i].x;
weightSum.y += filterKernelBasic[i].y;
weightSum.z += filterKernelBasic[i].z;
}
// Renormalize the weights to conserve energy.
for (int i = 0; i < kNumSamples; i++)
{
filterKernelBasic[i].x *= 1 / weightSum.x;
filterKernelBasic[i].y *= 1 / weightSum.y;
filterKernelBasic[i].z *= 1 / weightSum.z;
}
Vector4 weightedStdDev;
weightedStdDev.x = Mathf.Lerp(stdDev1.r, stdDev2.r, lerpWeight);
weightedStdDev.y = Mathf.Lerp(stdDev1.g, stdDev2.g, lerpWeight);
weightedStdDev.z = Mathf.Lerp(stdDev1.b, stdDev2.b, lerpWeight);
weightedStdDev.w = Mathf.Lerp(maxStdDev1, maxStdDev2, lerpWeight);
// Store (1 / (2 * WeightedVariance)) per color channel.
// Warning: do not use halfRcpWeightedVariances.Set(). It will not work.
halfRcpWeightedVariances = new Vector4(0.5f / (weightedStdDev.x * weightedStdDev.x),
0.5f / (weightedStdDev.y * weightedStdDev.y),
0.5f / (weightedStdDev.z * weightedStdDev.z),
0.5f / (weightedStdDev.w * weightedStdDev.w));
}
// <<< Old SSS Model
static float DisneyProfile(float r, float s)
{
return s * (Mathf.Exp(-r * s) + Mathf.Exp(-r * s * (1.0f / 3.0f))) / (8.0f * Mathf.PI * r);
}
static float DisneyProfilePdf(float r, float s)
{
return r * DisneyProfile(r, s);
}
static float DisneyProfileCdf(float r, float s)
{
return 1.0f - 0.25f * Mathf.Exp(-r * s) - 0.75f * Mathf.Exp(-r * s * (1.0f / 3.0f));
}
static float DisneyProfileCdfDerivative1(float r, float s)
{
return 0.25f * s * Mathf.Exp(-r * s) * (1.0f + Mathf.Exp(r * s * (2.0f / 3.0f)));
}
static float DisneyProfileCdfDerivative2(float r, float s)
{
return (-1.0f / 12.0f) * s * s * Mathf.Exp(-r * s) * (3.0f + Mathf.Exp(r * s * (2.0f / 3.0f)));
}
// The CDF is not analytically invertible, so we use Halley's Method of root finding.
// { f(r, s, p) = CDF(r, s) - p = 0 } with the initial guess { r = (10^p - 1) / s }.
static float DisneyProfileCdfInverse(float p, float s)
{
// Supply the initial guess.
float r = (Mathf.Pow(10f, p) - 1f) / s;
float t = float.MaxValue;
while (true)
{
float f0 = DisneyProfileCdf(r, s) - p;
float f1 = DisneyProfileCdfDerivative1(r, s);
float f2 = DisneyProfileCdfDerivative2(r, s);
float dr = f0 / (f1 * (1f - f0 * f2 / (2f * f1 * f1)));
if (Mathf.Abs(dr) < t)
{
r = r - dr;
t = Mathf.Abs(dr);
}
else
{
// Converged to the best result.
break;
}
}
return r;
}
// Old SSS Model >>>
static float Gaussian(float x, float stdDev)
{
float variance = stdDev * stdDev;
return Mathf.Exp(-x * x / (2 * variance)) / Mathf.Sqrt(2 * Mathf.PI * variance);
}
static float GaussianCombination(float x, float stdDev1, float stdDev2, float lerpWeight)
{
return Mathf.Lerp(Gaussian(x, stdDev1), Gaussian(x, stdDev2), lerpWeight);
}
static float RationalApproximation(float t)
{
// Abramowitz and Stegun formula 26.2.23.
// The absolute value of the error should be less than 4.5 e-4.
float[] c = { 2.515517f, 0.802853f, 0.010328f };
float[] d = { 1.432788f, 0.189269f, 0.001308f };
return t - ((c[2] * t + c[1]) * t + c[0]) / (((d[2] * t + d[1]) * t + d[0]) * t + 1.0f);
}
// Ref: https://www.johndcook.com/blog/csharp_phi_inverse/
static float NormalCdfInverse(float p, float stdDev)
{
float x;
if (p < 0.5)
{
// F^-1(p) = - G^-1(p)
x = -RationalApproximation(Mathf.Sqrt(-2f * Mathf.Log(p)));
}
else
{
// F^-1(p) = G^-1(1-p)
x = RationalApproximation(Mathf.Sqrt(-2f * Mathf.Log(1f - p)));
}
return x * stdDev;
}
static float GaussianCombinationCdfInverse(float p, float stdDev1, float stdDev2, float lerpWeight)
{
return Mathf.Lerp(NormalCdfInverse(p, stdDev1), NormalCdfInverse(p, stdDev2), lerpWeight);
}
// <<< Old SSS Model
}
public sealed class DiffusionProfileSettings : ScriptableObject
{
public DiffusionProfile[] profiles;
[NonSerialized] public uint texturingModeFlags; // 1 bit/profile: 0 = PreAndPostScatter, 1 = PostScatter
[NonSerialized] public uint transmissionFlags; // 1 bit/profile: 0 = regular, 1 = thin
[NonSerialized] public Vector4[] thicknessRemaps; // Remap: 0 = start, 1 = end - start
[NonSerialized] public Vector4[] worldScales; // X = meters per world unit; Y = world units per meter
[NonSerialized] public Vector4[] shapeParams; // RGB = S = 1 / D, A = filter radius
[NonSerialized] public Vector4[] transmissionTintsAndFresnel0; // RGB = color, A = fresnel0
[NonSerialized] public Vector4[] disabledTransmissionTintsAndFresnel0; // RGB = black, A = fresnel0 - For debug to remove the transmission
[NonSerialized] public Vector4[] filterKernels; // XY = near field, ZW = far field; 0 = radius, 1 = reciprocal of the PDF
// Old SSS Model >>>
[NonSerialized] public Vector4[] halfRcpWeightedVariances;
[NonSerialized] public Vector4[] halfRcpVariancesAndWeights;
[NonSerialized] public Vector4[] filterKernelsBasic;
// <<< Old SSS Model
public DiffusionProfile this[int index]
{
get
{
if (index >= DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT - 1)
throw new IndexOutOfRangeException("index");
return profiles[index];
}
}
void OnEnable()
{
// The neutral profile is not a part of the array.
int profileArraySize = DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT - 1;
if (profiles != null && profiles.Length != profileArraySize)
Array.Resize(ref profiles, profileArraySize);
if (profiles == null)
profiles = new DiffusionProfile[profileArraySize];
for (int i = 0; i < profileArraySize; i++)
{
if (profiles[i] == null)
profiles[i] = new DiffusionProfile("Profile " + (i + 1));
profiles[i].Validate();
}
ValidateArray(ref thicknessRemaps, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
ValidateArray(ref worldScales, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
ValidateArray(ref shapeParams, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
ValidateArray(ref transmissionTintsAndFresnel0, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
ValidateArray(ref disabledTransmissionTintsAndFresnel0, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
ValidateArray(ref filterKernels, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT * DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD);
// Old SSS Model >>>
ValidateArray(ref halfRcpWeightedVariances, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT);
ValidateArray(ref halfRcpVariancesAndWeights, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT * 2);
ValidateArray(ref filterKernelsBasic, DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT * DiffusionProfileConstants.SSS_BASIC_N_SAMPLES);
Debug.Assert(DiffusionProfileConstants.DIFFUSION_PROFILE_NEUTRAL_ID <= 32, "Transmission and Texture flags (32-bit integer) cannot support more than 32 profiles.");
UpdateCache();
}
static void ValidateArray<T>(ref T[] array, int len)
{
if (array == null || array.Length != len)
array = new T[len];
}
public void UpdateCache()
{
for (int i = 0; i < DiffusionProfileConstants.DIFFUSION_PROFILE_COUNT - 1; i++)
{
UpdateCache(i);
}
// Fill the neutral profile.
int neutralId = DiffusionProfileConstants.DIFFUSION_PROFILE_NEUTRAL_ID;
worldScales[neutralId] = Vector4.one;
shapeParams[neutralId] = Vector4.zero;
for (int j = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD; j < n; j++)
{
filterKernels[n * neutralId + j].x = 0f;
filterKernels[n * neutralId + j].y = 1f;
filterKernels[n * neutralId + j].z = 0f;
filterKernels[n * neutralId + j].w = 1f;
}
// Old SSS Model >>>
halfRcpWeightedVariances[neutralId] = Vector4.one;
for (int j = 0, n = DiffusionProfileConstants.SSS_BASIC_N_SAMPLES; j < n; j++)
{
filterKernelsBasic[n * neutralId + j] = Vector4.one;
filterKernelsBasic[n * neutralId + j].w = 0f;
}
// <<< Old SSS Model
}
public void UpdateCache(int p)
{
// 'p' is the profile array index. 'i' is the index in the shader (accounting for the neutral profile).
int i = p + 1;
// Erase previous value (This need to be done here individually as in the SSS editor we edit individual component)
uint mask = 1u << i;
texturingModeFlags &= ~mask;
mask = 1u << i;
transmissionFlags &= ~mask;
texturingModeFlags |= (uint)profiles[p].texturingMode << i;
transmissionFlags |= (uint)profiles[p].transmissionMode << i;
thicknessRemaps[i] = new Vector4(profiles[p].thicknessRemap.x, profiles[p].thicknessRemap.y - profiles[p].thicknessRemap.x, 0f, 0f);
worldScales[i] = new Vector4(profiles[p].worldScale, 1.0f / profiles[p].worldScale, 0f, 0f);
shapeParams[i] = profiles[p].shapeParam;
shapeParams[i].w = profiles[p].maxRadius;
// Convert ior to fresnel0
float fresnel0 = (profiles[p].ior - 1.0f) / (profiles[p].ior + 1.0f);
fresnel0 *= fresnel0; // square
transmissionTintsAndFresnel0[i] = new Vector4(profiles[p].transmissionTint.r * 0.25f, profiles[p].transmissionTint.g * 0.25f, profiles[p].transmissionTint.b * 0.25f, fresnel0); // Premultiplied
disabledTransmissionTintsAndFresnel0[i] = new Vector4(0.0f, 0.0f, 0.0f, fresnel0);
for (int j = 0, n = DiffusionProfileConstants.SSS_N_SAMPLES_NEAR_FIELD; j < n; j++)
{
filterKernels[n * i + j].x = profiles[p].filterKernelNearField[j].x;
filterKernels[n * i + j].y = profiles[p].filterKernelNearField[j].y;
if (j < DiffusionProfileConstants.SSS_N_SAMPLES_FAR_FIELD)
{
filterKernels[n * i + j].z = profiles[p].filterKernelFarField[j].x;
filterKernels[n * i + j].w = profiles[p].filterKernelFarField[j].y;
}
}
// Old SSS Model >>>
halfRcpWeightedVariances[i] = profiles[p].halfRcpWeightedVariances;
var stdDev1 = ((1f / 3f) * DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE) * (Vector4)profiles[p].scatterDistance1;
var stdDev2 = ((1f / 3f) * DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE) * (Vector4)profiles[p].scatterDistance2;
// Multiply by 0.1 to convert from millimeters to centimeters. Apply the distance scale.
// Rescale by 4 to counter rescaling of transmission tints.
float a = 0.1f * DiffusionProfileConstants.SSS_BASIC_DISTANCE_SCALE;
halfRcpVariancesAndWeights[2 * i + 0] = new Vector4(a * a * 0.5f / (stdDev1.x * stdDev1.x), a * a * 0.5f / (stdDev1.y * stdDev1.y), a * a * 0.5f / (stdDev1.z * stdDev1.z), 4f * (1f - profiles[p].lerpWeight));
halfRcpVariancesAndWeights[2 * i + 1] = new Vector4(a * a * 0.5f / (stdDev2.x * stdDev2.x), a * a * 0.5f / (stdDev2.y * stdDev2.y), a * a * 0.5f / (stdDev2.z * stdDev2.z), 4f * profiles[p].lerpWeight);
for (int j = 0, n = DiffusionProfileConstants.SSS_BASIC_N_SAMPLES; j < n; j++)
{
filterKernelsBasic[n * i + j] = profiles[p].filterKernelBasic[j];
}
// <<< Old SSS Model
}
}
}