您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 

257 行
9.8 KiB

//-----------------------------------------------------------------------------
// EvaluateBSDF_Line - Reference
//-----------------------------------------------------------------------------
void IntegrateBSDF_LineRef(float3 V, float3 positionWS,
PreLightData preLightData, LightData lightData, BSDFData bsdfData,
out float3 diffuseLighting, out float3 specularLighting,
int sampleCount = 128)
{
diffuseLighting = float3(0.0, 0.0, 0.0);
specularLighting = float3(0.0, 0.0, 0.0);
const float len = lightData.size.x;
const float3 T = lightData.right;
const float3 P1 = lightData.positionWS - T * (0.5 * len);
const float dt = len * rcp(sampleCount);
const float off = 0.5 * dt;
// Uniformly sample the line segment with the Pdf = 1 / len.
const float invPdf = len;
for (int i = 0; i < sampleCount; ++i)
{
// Place the sample in the middle of the interval.
float t = off + i * dt;
float3 sPos = P1 + t * T;
float3 unL = sPos - positionWS;
float dist2 = dot(unL, unL);
float3 L = normalize(unL);
float sinLT = length(cross(L, T));
float NdotL = saturate(dot(bsdfData.normalWS, L));
if (NdotL > 0)
{
float3 lightDiff, lightSpec;
BSDF(V, L, positionWS, preLightData, bsdfData, lightDiff, lightSpec);
diffuseLighting += lightDiff * (sinLT / dist2 * NdotL);
specularLighting += lightSpec * (sinLT / dist2 * NdotL);
}
}
// The factor of 2 is due to the fact: Integral{0, 2 PI}{max(0, cos(x))dx} = 2.
float normFactor = 2.0 * invPdf * rcp(sampleCount);
diffuseLighting *= normFactor * lightData.diffuseScale * lightData.color;
specularLighting *= normFactor * lightData.specularScale * lightData.color;
}
//-----------------------------------------------------------------------------
// EvaluateBSDF_Area - Reference
//-----------------------------------------------------------------------------
void IntegrateBSDF_AreaRef(float3 V, float3 positionWS,
PreLightData preLightData, LightData lightData, BSDFData bsdfData,
out float3 diffuseLighting, out float3 specularLighting,
uint sampleCount = 512)
{
// Add some jittering on Hammersley2d
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
diffuseLighting = float3(0.0, 0.0, 0.0);
specularLighting = float3(0.0, 0.0, 0.0);
for (uint i = 0; i < sampleCount; ++i)
{
float3 P = float3(0.0, 0.0, 0.0); // Sample light point. Random point on the light shape in local space.
float3 Ns = float3(0.0, 0.0, 0.0); // Unit surface normal at P
float lightPdf = 0.0; // Pdf of the light sample
float2 u = Hammersley2d(i, sampleCount);
u = frac(u + randNum);
// Lights in Unity point backward.
float4x4 localToWorld = float4x4(float4(lightData.right, 0.0), float4(lightData.up, 0.0), float4(-lightData.forward, 0.0), float4(lightData.positionWS, 1.0));
switch (lightData.lightType)
{
//case GPULIGHTTYPE_SPHERE:
// SampleSphere(u, localToWorld, lightData.size.x, lightPdf, P, Ns);
// break;
//case GPULIGHTTYPE_HEMISPHERE:
// SampleHemisphere(u, localToWorld, lightData.size.x, lightPdf, P, Ns);
// break;
//case GPULIGHTTYPE_CYLINDER:
// SampleCylinder(u, localToWorld, lightData.size.x, lightData.size.y, lightPdf, P, Ns);
// break;
case GPULIGHTTYPE_RECTANGLE:
SampleRectangle(u, localToWorld, lightData.size.x, lightData.size.y, lightPdf, P, Ns);
break;
//case GPULIGHTTYPE_DISK:
// SampleDisk(u, localToWorld, lightData.size.x, lightPdf, P, Ns);
// break;
// case GPULIGHTTYPE_LINE: handled by a separate function.
}
// Get distance
float3 unL = P - positionWS;
float sqrDist = dot(unL, unL);
float3 L = normalize(unL);
// Cosine of the angle between the light direction and the normal of the light's surface.
float cosLNs = saturate(dot(-L, Ns));
// We calculate area reference light with the area integral rather than the solid angle one.
float illuminance = cosLNs * saturate(dot(bsdfData.normalWS, L)) / (sqrDist * lightPdf);
float3 localDiffuseLighting = float3(0.0, 0.0, 0.0);
float3 localSpecularLighting = float3(0.0, 0.0, 0.0);
if (illuminance > 0.0)
{
BSDF(V, L, positionWS, preLightData, bsdfData, localDiffuseLighting, localSpecularLighting);
localDiffuseLighting *= lightData.color * illuminance * lightData.diffuseScale;
localSpecularLighting *= lightData.color * illuminance * lightData.specularScale;
}
diffuseLighting += localDiffuseLighting;
specularLighting += localSpecularLighting;
}
diffuseLighting /= float(sampleCount);
specularLighting /= float(sampleCount);
}
//-----------------------------------------------------------------------------
// EvaluateBSDF_Env - Reference
// ----------------------------------------------------------------------------
// Ref: Moving Frostbite to PBR (Appendix A)
float3 IntegrateLambertIBLRef(LightLoopContext lightLoopContext,
float3 V, EnvLightData lightData, BSDFData bsdfData,
uint sampleCount = 4096)
{
float3x3 localToWorld = float3x3(bsdfData.tangentWS, bsdfData.bitangentWS, bsdfData.normalWS);
float3 acc = float3(0.0, 0.0, 0.0);
// Add some jittering on Hammersley2d
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
for (uint i = 0; i < sampleCount; ++i)
{
float2 u = Hammersley2d(i, sampleCount);
u = frac(u + randNum);
float3 L;
float NdotL;
float weightOverPdf;
ImportanceSampleLambert(u, localToWorld, L, NdotL, weightOverPdf);
if (NdotL > 0.0)
{
float4 val = SampleEnv(lightLoopContext, lightData.envIndex, L, 0);
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
acc += LambertNoPI() * weightOverPdf * val.rgb;
}
}
return acc / sampleCount;
}
float3 IntegrateDisneyDiffuseIBLRef(LightLoopContext lightLoopContext,
float3 V, PreLightData preLightData, EnvLightData lightData, BSDFData bsdfData,
uint sampleCount = 4096)
{
float3x3 localToWorld = float3x3(bsdfData.tangentWS, bsdfData.bitangentWS, bsdfData.normalWS);
float NdotV = max(preLightData.NdotV, MIN_N_DOT_V);
float3 acc = float3(0.0, 0.0, 0.0);
// Add some jittering on Hammersley2d
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
for (uint i = 0; i < sampleCount; ++i)
{
float2 u = Hammersley2d(i, sampleCount);
u = frac(u + randNum);
float3 L;
float NdotL;
float weightOverPdf;
// for Disney we still use a Cosine importance sampling, true Disney importance sampling imply a look up table
ImportanceSampleLambert(u, localToWorld, L, NdotL, weightOverPdf);
if (NdotL > 0.0)
{
float LdotV = dot(L, V);
// Note: we call DisneyDiffuse that require to multiply by Albedo / PI. Divide by PI is already taken into account
// in weightOverPdf of ImportanceSampleLambert call.
float disneyDiffuse = DisneyDiffuse(NdotV, NdotL, LdotV, bsdfData.perceptualRoughness);
float4 val = SampleEnv(lightLoopContext, lightData.envIndex, L, 0);
// We don't multiply by 'bsdfData.diffuseColor' here. It's done only once in PostEvaluateBSDF().
acc += disneyDiffuse * weightOverPdf * val.rgb;
}
}
return acc / sampleCount;
}
// Ref: Moving Frostbite to PBR (Appendix A)
float3 IntegrateSpecularGGXIBLRef(LightLoopContext lightLoopContext,
float3 V, PreLightData preLightData, EnvLightData lightData, BSDFData bsdfData,
uint sampleCount = 2048)
{
float3x3 localToWorld;
if (bsdfData.materialId == MATERIALID_LIT_ANISO)
{
localToWorld = float3x3(bsdfData.tangentWS, bsdfData.bitangentWS, bsdfData.normalWS);
}
else
{
// We do not have a tangent frame unless we use anisotropic GGX.
localToWorld = GetLocalFrame(bsdfData.normalWS);
}
float NdotV = max(preLightData.NdotV, MIN_N_DOT_V);
float3 acc = float3(0.0, 0.0, 0.0);
// Add some jittering on Hammersley2d
float2 randNum = InitRandom(V.xy * 0.5 + 0.5);
for (uint i = 0; i < sampleCount; ++i)
{
float2 u = Hammersley2d(i, sampleCount);
u = frac(u + randNum);
float VdotH;
float NdotL;
float3 L;
float weightOverPdf;
// GGX BRDF
if (bsdfData.materialId == MATERIALID_LIT_ANISO)
{
ImportanceSampleAnisoGGX(u, V, localToWorld, bsdfData.roughnessT, bsdfData.roughnessB, NdotV, L, VdotH, NdotL, weightOverPdf);
}
else
{
ImportanceSampleGGX(u, V, localToWorld, bsdfData.roughness, NdotV, L, VdotH, NdotL, weightOverPdf);
}
if (NdotL > 0.0)
{
// Fresnel component is apply here as describe in ImportanceSampleGGX function
float3 FweightOverPdf = F_Schlick(bsdfData.fresnel0, VdotH) * weightOverPdf;
float4 val = SampleEnv(lightLoopContext, lightData.envIndex, L, 0);
acc += FweightOverPdf * val.rgb;
}
}
return acc / sampleCount;
}