您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
330 行
14 KiB
330 行
14 KiB
//-----------------------------------------------------------------------------
|
|
// LightLoop
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void ApplyDebug(LightLoopContext lightLoopContext, float3 positionWS, inout float3 diffuseLighting, inout float3 specularLighting)
|
|
{
|
|
#ifdef DEBUG_DISPLAY
|
|
if (_DebugLightingMode == DEBUGLIGHTINGMODE_DIFFUSE_LIGHTING)
|
|
{
|
|
specularLighting = float3(0.0, 0.0, 0.0); // Disable specular lighting
|
|
}
|
|
else if (_DebugLightingMode == DEBUGLIGHTINGMODE_SPECULAR_LIGHTING)
|
|
{
|
|
diffuseLighting = float3(0.0, 0.0, 0.0); // Disable diffuse lighting
|
|
}
|
|
else if (_DebugLightingMode == DEBUGLIGHTINGMODE_VISUALIZE_CASCADE)
|
|
{
|
|
specularLighting = float3(0.0, 0.0, 0.0);
|
|
|
|
const float3 s_CascadeColors[] = {
|
|
float3(1.0, 0.0, 0.0),
|
|
float3(0.0, 1.0, 0.0),
|
|
float3(0.0, 0.0, 1.0),
|
|
float3(1.0, 1.0, 0.0)
|
|
};
|
|
|
|
float shadow = GetDirectionalShadowAttenuation(lightLoopContext.shadowContext, positionWS, float3(0.0, 1.0, 0.0 ), 0, float3(0.0, 0.0, 0.0), float2(0.0, 0.0));
|
|
float4 dirShadowSplitSpheres[4];
|
|
uint payloadOffset = EvalShadow_LoadSplitSpheres(lightLoopContext.shadowContext, 0, dirShadowSplitSpheres);
|
|
int shadowSplitIndex = EvalShadow_GetSplitSphereIndexForDirshadows(positionWS, dirShadowSplitSpheres);
|
|
|
|
if (shadowSplitIndex == -1)
|
|
{
|
|
diffuseLighting = float3(0.0, 0.0, 0.0);
|
|
}
|
|
else
|
|
{
|
|
diffuseLighting = s_CascadeColors[shadowSplitIndex] * shadow;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef LIGHTLOOP_TILE_PASS
|
|
|
|
// Calculate the offset in global light index light for current light category
|
|
int GetTileOffset(PositionInputs posInput, uint lightCategory)
|
|
{
|
|
uint2 tileIndex = posInput.unTileCoord;
|
|
return (tileIndex.y + lightCategory * _NumTileFtplY) * _NumTileFtplX + tileIndex.x;
|
|
}
|
|
|
|
void GetCountAndStartTile(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount)
|
|
{
|
|
const int tileOffset = GetTileOffset(posInput, lightCategory);
|
|
|
|
// The first entry inside a tile is the number of light for lightCategory (thus the +0)
|
|
lightCount = g_vLightListGlobal[DWORD_PER_TILE * tileOffset + 0] & 0xffff;
|
|
start = tileOffset;
|
|
}
|
|
|
|
#ifdef USE_FPTL_LIGHTLIST
|
|
|
|
uint GetTileSize()
|
|
{
|
|
return TILE_SIZE_FPTL;
|
|
}
|
|
|
|
void GetCountAndStart(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount)
|
|
{
|
|
GetCountAndStartTile(posInput, lightCategory, start, lightCount);
|
|
}
|
|
|
|
uint FetchIndex(uint tileOffset, uint lightIndex)
|
|
{
|
|
const uint lightIndexPlusOne = lightIndex + 1; // Add +1 as first slot is reserved to store number of light
|
|
// Light index are store on 16bit
|
|
return (g_vLightListGlobal[DWORD_PER_TILE * tileOffset + (lightIndexPlusOne >> 1)] >> ((lightIndexPlusOne & 1) * DWORD_PER_TILE)) & 0xffff;
|
|
}
|
|
|
|
#elif defined(USE_CLUSTERED_LIGHTLIST)
|
|
|
|
#include "ClusteredUtils.hlsl"
|
|
|
|
uint GetTileSize()
|
|
{
|
|
return TILE_SIZE_CLUSTERED;
|
|
}
|
|
|
|
void GetCountAndStartCluster(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount)
|
|
{
|
|
uint2 tileIndex = posInput.unTileCoord;
|
|
|
|
float logBase = g_fClustBase;
|
|
if (g_isLogBaseBufferEnabled)
|
|
{
|
|
logBase = g_logBaseBuffer[tileIndex.y * _NumTileClusteredX + tileIndex.x];
|
|
}
|
|
|
|
int clustIdx = SnapToClusterIdxFlex(posInput.linearDepth, logBase, g_isLogBaseBufferEnabled != 0);
|
|
|
|
int nrClusters = (1 << g_iLog2NumClusters);
|
|
const int idx = ((lightCategory * nrClusters + clustIdx) * _NumTileClusteredY + tileIndex.y) * _NumTileClusteredX + tileIndex.x;
|
|
uint dataPair = g_vLayeredOffsetsBuffer[idx];
|
|
start = dataPair & 0x7ffffff;
|
|
lightCount = (dataPair >> 27) & 31;
|
|
}
|
|
|
|
void GetCountAndStart(PositionInputs posInput, uint lightCategory, out uint start, out uint lightCount)
|
|
{
|
|
GetCountAndStartCluster(posInput, lightCategory, start, lightCount);
|
|
}
|
|
|
|
uint FetchIndex(uint tileOffset, uint lightIndex)
|
|
{
|
|
return g_vLightListGlobal[tileOffset + lightIndex];
|
|
}
|
|
|
|
#endif // USE_FPTL_LIGHTLIST
|
|
|
|
#else
|
|
|
|
uint GetTileSize()
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
#endif // LIGHTLOOP_TILE_PASS
|
|
|
|
// bakeDiffuseLighting is part of the prototype so a user is able to implement a "base pass" with GI and multipass direct light (aka old unity rendering path)
|
|
void LightLoop( float3 V, PositionInputs posInput, PreLightData preLightData, BSDFData bsdfData, BakeLightingData bakeLightingData, uint featureFlags,
|
|
out float3 diffuseLighting,
|
|
out float3 specularLighting)
|
|
{
|
|
LightLoopContext context;
|
|
context.sampleReflection = 0;
|
|
context.shadowContext = InitShadowContext();
|
|
|
|
// This struct is define in the material. the Lightloop must not access it
|
|
// PostEvaluateBSDF call at the end will convert Lighting to diffuse and specular lighting
|
|
AggregateLighting aggregateLighting;
|
|
ZERO_INITIALIZE(AggregateLighting, aggregateLighting); // LightLoop is in charge of initializing the struct
|
|
|
|
uint i = 0; // Declare once to avoid the D3D11 compiler warning.
|
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_DIRECTIONAL)
|
|
{
|
|
for (i = 0; i < _DirectionalLightCount; ++i)
|
|
{
|
|
DirectLighting lighting = EvaluateBSDF_Directional(context, V, posInput, preLightData, _DirectionalLightDatas[i], bsdfData, bakeLightingData);
|
|
AccumulateDirectLighting(lighting, aggregateLighting);
|
|
}
|
|
}
|
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_PUNCTUAL)
|
|
{
|
|
#ifdef LIGHTLOOP_TILE_PASS
|
|
|
|
// TODO: Convert the for loop below to a while on each type as we know we are sorted and compare performance.
|
|
uint punctualLightStart;
|
|
uint punctualLightCount;
|
|
GetCountAndStart(posInput, LIGHTCATEGORY_PUNCTUAL, punctualLightStart, punctualLightCount);
|
|
|
|
for (i = 0; i < punctualLightCount; ++i)
|
|
{
|
|
int punctualIndex = FetchIndex(punctualLightStart, i);
|
|
DirectLighting lighting = EvaluateBSDF_Punctual(context, V, posInput, preLightData, _LightDatas[punctualIndex], bsdfData, bakeLightingData);
|
|
AccumulateDirectLighting(lighting, aggregateLighting);
|
|
}
|
|
|
|
#else
|
|
|
|
for (i = 0; i < _PunctualLightCount; ++i)
|
|
{
|
|
DirectLighting lighting = EvaluateBSDF_Punctual(context, V, posInput, preLightData, _LightDatas[i], bsdfData, bakeLightingData);
|
|
AccumulateDirectLighting(lighting, aggregateLighting);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_AREA)
|
|
{
|
|
#ifdef LIGHTLOOP_TILE_PASS
|
|
|
|
uint areaLightStart;
|
|
uint areaLightCount;
|
|
GetCountAndStart(posInput, LIGHTCATEGORY_AREA, areaLightStart, areaLightCount);
|
|
|
|
// COMPILER BEHAVIOR WARNING!
|
|
// If rectangle lights are before line lights, the compiler will duplicate light matrices in VGPR because they are used differently between the two types of lights.
|
|
// By keeping line lights first we avoid this behavior and save substantial register pressure.
|
|
// TODO: This is based on the current Lit.shader and can be different for any other way of implementing area lights, how to be generic and ensure performance ?
|
|
|
|
i = 0;
|
|
if (areaLightCount > 0)
|
|
{
|
|
uint areaIndex = FetchIndex(areaLightStart, 0);
|
|
uint lightType = _LightDatas[areaIndex].lightType;
|
|
|
|
while (i < areaLightCount && lightType == GPULIGHTTYPE_LINE)
|
|
{
|
|
DirectLighting lighting = EvaluateBSDF_Area(context, V, posInput, preLightData, _LightDatas[areaIndex], bsdfData, bakeLightingData, GPULIGHTTYPE_LINE);
|
|
AccumulateDirectLighting(lighting, aggregateLighting);
|
|
|
|
i++;
|
|
areaIndex = i < areaLightCount ? FetchIndex(areaLightStart, i) : 0;
|
|
lightType = i < areaLightCount ? _LightDatas[areaIndex].lightType : 0xFF;
|
|
}
|
|
|
|
while (i < areaLightCount && lightType == GPULIGHTTYPE_RECTANGLE)
|
|
{
|
|
DirectLighting lighting = EvaluateBSDF_Area(context, V, posInput, preLightData, _LightDatas[areaIndex], bsdfData, bakeLightingData, GPULIGHTTYPE_RECTANGLE);
|
|
AccumulateDirectLighting(lighting, aggregateLighting);
|
|
|
|
i++;
|
|
areaIndex = i < areaLightCount ? FetchIndex(areaLightStart, i) : 0;
|
|
lightType = i < areaLightCount ? _LightDatas[areaIndex].lightType : 0xFF;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
for (i = _PunctualLightCount; i < _PunctualLightCount + _AreaLightCount; ++i)
|
|
{
|
|
DirectLighting lighting = EvaluateBSDF_Area(context, V, posInput, preLightData, _LightDatas[i], bsdfData, bakeLightingData, _LightDatas[i].lightType);
|
|
AccumulateDirectLighting(lighting, aggregateLighting);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
float reflectionHierarchyWeight = 0.0; // Max: 1.0
|
|
float refractionHierarchyWeight = 0.0; // Max: 1.0
|
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_SSREFRACTION)
|
|
{
|
|
IndirectLighting lighting = EvaluateBSDF_SSRefraction(context, V, posInput, preLightData, bsdfData, refractionHierarchyWeight);
|
|
AccumulateIndirectLighting(lighting, aggregateLighting);
|
|
}
|
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_SSREFLECTION)
|
|
{
|
|
IndirectLighting lighting = EvaluateBSDF_SSReflection(context, V, posInput, preLightData, bsdfData, reflectionHierarchyWeight);
|
|
AccumulateIndirectLighting(lighting, aggregateLighting);
|
|
}
|
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_ENV || featureFlags & LIGHTFEATUREFLAGS_SKY)
|
|
{
|
|
// Reflection probes are sorted by volume (in the increasing order).
|
|
if (featureFlags & LIGHTFEATUREFLAGS_ENV)
|
|
{
|
|
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_REFLECTION_PROBES;
|
|
|
|
#ifdef LIGHTLOOP_TILE_PASS
|
|
uint envLightStart;
|
|
uint envLightCount;
|
|
GetCountAndStart(posInput, LIGHTCATEGORY_ENV, envLightStart, envLightCount);
|
|
#else
|
|
uint envLightCount = _EnvLightCount;
|
|
#endif
|
|
|
|
// Note: In case of IBL we are sorted from smaller to bigger projected solid angle bounds. We are not sorted by type so we can't do a 'while' approach like for area light.
|
|
for (i = 0; i < envLightCount && reflectionHierarchyWeight < 1.0; ++i)
|
|
{
|
|
#ifdef LIGHTLOOP_TILE_PASS
|
|
uint envLightIndex = FetchIndex(envLightStart, i);
|
|
#else
|
|
uint envLightIndex = i;
|
|
#endif
|
|
IndirectLighting lighting = EvaluateBSDF_Env( context, V, posInput, preLightData, _EnvLightDatas[envLightIndex], bsdfData, _EnvLightDatas[envLightIndex].envShapeType,
|
|
GPUIMAGEBASEDLIGHTINGTYPE_REFLECTION, reflectionHierarchyWeight);
|
|
AccumulateIndirectLighting(lighting, aggregateLighting);
|
|
}
|
|
|
|
// Refraction probe and reflection probe will process exactly the same weight. It will be good for performance to be able to share this computation
|
|
// However it is hard to deal with the fact that reflectionHierarchyWeight and refractionHierarchyWeight have not the same values, they are independent
|
|
// The refraction probe is rarely used and happen only with sphere shape and high IOR. So we accept the slow path that use more simple code and
|
|
// doesn't affect the performance of the reflection which is more important.
|
|
// We reuse LIGHTFEATUREFLAGS_SSREFRACTION flag as refraction is mainly base on the screen. Would be aa waste to not use screen and only cubemap.
|
|
if (featureFlags & LIGHTFEATUREFLAGS_SSREFRACTION)
|
|
{
|
|
for (i = 0; i < envLightCount && refractionHierarchyWeight < 1.0; ++i)
|
|
{
|
|
#ifdef LIGHTLOOP_TILE_PASS
|
|
uint envLightIndex = FetchIndex(envLightStart, i);
|
|
#else
|
|
uint envLightIndex = i;
|
|
#endif
|
|
IndirectLighting lighting = EvaluateBSDF_Env( context, V, posInput, preLightData, _EnvLightDatas[envLightIndex], bsdfData, _EnvLightDatas[envLightIndex].envShapeType,
|
|
GPUIMAGEBASEDLIGHTINGTYPE_REFRACTION, refractionHierarchyWeight);
|
|
AccumulateIndirectLighting(lighting, aggregateLighting);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only apply the sky IBL if the sky texture is available
|
|
if (featureFlags & LIGHTFEATUREFLAGS_SKY && _EnvLightSkyEnabled)
|
|
{
|
|
// Only apply the sky if we haven't yet accumulated enough IBL lighting.
|
|
if (reflectionHierarchyWeight < 1.0)
|
|
{
|
|
// The sky is a single cubemap texture separate from the reflection probe texture array (different resolution and compression)
|
|
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_SKY;
|
|
EnvLightData envLightSky = InitSkyEnvLightData(0); // The sky data are generated on the fly so the compiler can optimize the code
|
|
IndirectLighting lighting = EvaluateBSDF_Env(context, V, posInput, preLightData, envLightSky, bsdfData, ENVSHAPETYPE_SKY, GPUIMAGEBASEDLIGHTINGTYPE_REFLECTION, reflectionHierarchyWeight);
|
|
AccumulateIndirectLighting(lighting, aggregateLighting);
|
|
}
|
|
|
|
if (featureFlags & LIGHTFEATUREFLAGS_SSREFRACTION)
|
|
{
|
|
if (refractionHierarchyWeight < 1.0)
|
|
{
|
|
// The sky is a single cubemap texture separate from the reflection probe texture array (different resolution and compression)
|
|
context.sampleReflection = SINGLE_PASS_CONTEXT_SAMPLE_SKY;
|
|
EnvLightData envLightSky = InitSkyEnvLightData(0); // The sky data are generated on the fly so the compiler can optimize the code
|
|
IndirectLighting lighting = EvaluateBSDF_Env(context, V, posInput, preLightData, envLightSky, bsdfData, ENVSHAPETYPE_SKY, GPUIMAGEBASEDLIGHTINGTYPE_REFRACTION, refractionHierarchyWeight);
|
|
AccumulateIndirectLighting(lighting, aggregateLighting);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Also Apply indiret diffuse (GI)
|
|
// PostEvaluateBSDF will perform any operation wanted by the material and sum everything into diffuseLighting and specularLighting
|
|
PostEvaluateBSDF( context, V, posInput, preLightData, bsdfData, bakeLightingData, aggregateLighting,
|
|
diffuseLighting, specularLighting);
|
|
|
|
ApplyDebug(context, posInput.positionWS, diffuseLighting, specularLighting);
|
|
}
|