您最多选择25个主题
主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
334 行
18 KiB
334 行
18 KiB
using UnityEngine.Experimental.GlobalIllumination;
|
|
using Unity.Collections;
|
|
|
|
namespace UnityEngine.Rendering.Universal.Internal
|
|
{
|
|
/// <summary>
|
|
/// Computes and submits lighting data to the GPU.
|
|
/// </summary>
|
|
public class ForwardLights
|
|
{
|
|
static class LightConstantBuffer
|
|
{
|
|
public static int _MainLightPosition;
|
|
public static int _MainLightColor;
|
|
|
|
public static int _AdditionalLightsCount;
|
|
public static int _AdditionalLightsPosition;
|
|
public static int _AdditionalLightsColor;
|
|
public static int _AdditionalLightsAttenuation;
|
|
public static int _AdditionalLightsSpotDir;
|
|
|
|
public static int _AdditionalLightOcclusionProbeChannel;
|
|
}
|
|
|
|
int m_AdditionalLightsBufferId;
|
|
int m_AdditionalLightsIndicesId;
|
|
|
|
const string k_SetupLightConstants = "Setup Light Constants";
|
|
MixedLightingSetup m_MixedLightingSetup;
|
|
|
|
Vector4 k_DefaultLightPosition = new Vector4(0.0f, 0.0f, 1.0f, 1.0f);
|
|
Vector4 k_DefaultLightColor = Color.black;
|
|
Vector4 k_DefaultLightAttenuation = new Vector4(1.0f, 0.0f, 0.0f, 1.0f);
|
|
Vector4 k_DefaultLightSpotDirection = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
|
|
Vector4 k_DefaultLightsProbeChannel = new Vector4(-1.0f, 1.0f, -1.0f, -1.0f);
|
|
|
|
Vector4[] m_AdditionalLightPositions;
|
|
Vector4[] m_AdditionalLightColors;
|
|
Vector4[] m_AdditionalLightAttenuations;
|
|
Vector4[] m_AdditionalLightSpotDirections;
|
|
Vector4[] m_AdditionalLightOcclusionProbeChannels;
|
|
|
|
bool m_UseStructuredBuffer;
|
|
|
|
public ForwardLights()
|
|
{
|
|
m_UseStructuredBuffer = RenderingUtils.useStructuredBuffer;
|
|
|
|
LightConstantBuffer._MainLightPosition = Shader.PropertyToID("_MainLightPosition");
|
|
LightConstantBuffer._MainLightColor = Shader.PropertyToID("_MainLightColor");
|
|
LightConstantBuffer._AdditionalLightsCount = Shader.PropertyToID("_AdditionalLightsCount");
|
|
|
|
if (m_UseStructuredBuffer)
|
|
{
|
|
m_AdditionalLightsBufferId = Shader.PropertyToID("_AdditionalLightsBuffer");
|
|
m_AdditionalLightsIndicesId = Shader.PropertyToID("_AdditionalLightsIndices");
|
|
}
|
|
else
|
|
{
|
|
LightConstantBuffer._AdditionalLightsPosition = Shader.PropertyToID("_AdditionalLightsPosition");
|
|
LightConstantBuffer._AdditionalLightsColor = Shader.PropertyToID("_AdditionalLightsColor");
|
|
LightConstantBuffer._AdditionalLightsAttenuation = Shader.PropertyToID("_AdditionalLightsAttenuation");
|
|
LightConstantBuffer._AdditionalLightsSpotDir = Shader.PropertyToID("_AdditionalLightsSpotDir");
|
|
LightConstantBuffer._AdditionalLightOcclusionProbeChannel = Shader.PropertyToID("_AdditionalLightsOcclusionProbes");
|
|
|
|
int maxLights = UniversalRenderPipeline.maxVisibleAdditionalLights;
|
|
m_AdditionalLightPositions = new Vector4[maxLights];
|
|
m_AdditionalLightColors = new Vector4[maxLights];
|
|
m_AdditionalLightAttenuations = new Vector4[maxLights];
|
|
m_AdditionalLightSpotDirections = new Vector4[maxLights];
|
|
m_AdditionalLightOcclusionProbeChannels = new Vector4[maxLights];
|
|
}
|
|
}
|
|
|
|
public void Setup(ScriptableRenderContext context, ref RenderingData renderingData)
|
|
{
|
|
int additionalLightsCount = renderingData.lightData.additionalLightsCount;
|
|
bool additionalLightsPerVertex = renderingData.lightData.shadeAdditionalLightsPerVertex;
|
|
CommandBuffer cmd = CommandBufferPool.Get(k_SetupLightConstants);
|
|
SetupShaderLightConstants(cmd, ref renderingData);
|
|
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.AdditionalLightsVertex,
|
|
additionalLightsCount > 0 && additionalLightsPerVertex);
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.AdditionalLightsPixel,
|
|
additionalLightsCount > 0 && !additionalLightsPerVertex);
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.MixedLightingSubtractive,
|
|
renderingData.lightData.supportsMixedLighting &&
|
|
m_MixedLightingSetup == MixedLightingSetup.Subtractive);
|
|
context.ExecuteCommandBuffer(cmd);
|
|
CommandBufferPool.Release(cmd);
|
|
}
|
|
|
|
void InitializeLightConstants(NativeArray<VisibleLight> lights, int lightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightAttenuation, out Vector4 lightSpotDir, out Vector4 lightOcclusionProbeChannel)
|
|
{
|
|
lightPos = k_DefaultLightPosition;
|
|
lightColor = k_DefaultLightColor;
|
|
lightAttenuation = k_DefaultLightAttenuation;
|
|
lightSpotDir = k_DefaultLightSpotDirection;
|
|
lightOcclusionProbeChannel = k_DefaultLightsProbeChannel;
|
|
|
|
// When no lights are visible, main light will be set to -1.
|
|
// In this case we initialize it to default values and return
|
|
if (lightIndex < 0)
|
|
return;
|
|
|
|
VisibleLight lightData = lights[lightIndex];
|
|
if (lightData.lightType == LightType.Directional)
|
|
{
|
|
Vector4 dir = -lightData.localToWorldMatrix.GetColumn(2);
|
|
lightPos = new Vector4(dir.x, dir.y, dir.z, 1.0f);
|
|
}
|
|
else
|
|
{
|
|
Vector4 pos = lightData.localToWorldMatrix.GetColumn(3);
|
|
lightPos = new Vector4(pos.x, pos.y, pos.z, 1.0f);
|
|
}
|
|
|
|
// VisibleLight.finalColor already returns color in active color space
|
|
lightColor = lightData.finalColor;
|
|
|
|
// Directional Light attenuation is initialize so distance attenuation always be 1.0
|
|
if (lightData.lightType != LightType.Directional)
|
|
{
|
|
// Light attenuation in universal matches the unity vanilla one.
|
|
// attenuation = 1.0 / distanceToLightSqr
|
|
// We offer two different smoothing factors.
|
|
// The smoothing factors make sure that the light intensity is zero at the light range limit.
|
|
// The first smoothing factor is a linear fade starting at 80 % of the light range.
|
|
// smoothFactor = (lightRangeSqr - distanceToLightSqr) / (lightRangeSqr - fadeStartDistanceSqr)
|
|
// We rewrite smoothFactor to be able to pre compute the constant terms below and apply the smooth factor
|
|
// with one MAD instruction
|
|
// smoothFactor = distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr)
|
|
// distanceSqr * oneOverFadeRangeSqr + lightRangeSqrOverFadeRangeSqr
|
|
|
|
// The other smoothing factor matches the one used in the Unity lightmapper but is slower than the linear one.
|
|
// smoothFactor = (1.0 - saturate((distanceSqr * 1.0 / lightrangeSqr)^2))^2
|
|
float lightRangeSqr = lightData.range * lightData.range;
|
|
float fadeStartDistanceSqr = 0.8f * 0.8f * lightRangeSqr;
|
|
float fadeRangeSqr = (fadeStartDistanceSqr - lightRangeSqr);
|
|
float oneOverFadeRangeSqr = 1.0f / fadeRangeSqr;
|
|
float lightRangeSqrOverFadeRangeSqr = -lightRangeSqr / fadeRangeSqr;
|
|
float oneOverLightRangeSqr = 1.0f / Mathf.Max(0.0001f, lightData.range * lightData.range);
|
|
|
|
// On mobile: Use the faster linear smoothing factor.
|
|
// On other devices: Use the smoothing factor that matches the GI.
|
|
lightAttenuation.x = Application.isMobilePlatform ? oneOverFadeRangeSqr : oneOverLightRangeSqr;
|
|
lightAttenuation.y = lightRangeSqrOverFadeRangeSqr;
|
|
}
|
|
|
|
if (lightData.lightType == LightType.Spot)
|
|
{
|
|
Vector4 dir = lightData.localToWorldMatrix.GetColumn(2);
|
|
lightSpotDir = new Vector4(-dir.x, -dir.y, -dir.z, 0.0f);
|
|
|
|
// Spot Attenuation with a linear falloff can be defined as
|
|
// (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle)
|
|
// This can be rewritten as
|
|
// invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle)
|
|
// SdotL * invAngleRange + (-cosOuterAngle * invAngleRange)
|
|
// If we precompute the terms in a MAD instruction
|
|
float cosOuterAngle = Mathf.Cos(Mathf.Deg2Rad * lightData.spotAngle * 0.5f);
|
|
// We neeed to do a null check for particle lights
|
|
// This should be changed in the future
|
|
// Particle lights will use an inline function
|
|
float cosInnerAngle;
|
|
if (lightData.light != null)
|
|
cosInnerAngle = Mathf.Cos(lightData.light.innerSpotAngle * Mathf.Deg2Rad * 0.5f);
|
|
else
|
|
cosInnerAngle = Mathf.Cos((2.0f * Mathf.Atan(Mathf.Tan(lightData.spotAngle * 0.5f * Mathf.Deg2Rad) * (64.0f - 18.0f) / 64.0f)) * 0.5f);
|
|
float smoothAngleRange = Mathf.Max(0.001f, cosInnerAngle - cosOuterAngle);
|
|
float invAngleRange = 1.0f / smoothAngleRange;
|
|
float add = -cosOuterAngle * invAngleRange;
|
|
lightAttenuation.z = invAngleRange;
|
|
lightAttenuation.w = add;
|
|
}
|
|
|
|
Light light = lightData.light;
|
|
|
|
// Set the occlusion probe channel.
|
|
int occlusionProbeChannel = light != null ? light.bakingOutput.occlusionMaskChannel : -1;
|
|
|
|
// If we have baked the light, the occlusion channel is the index we need to sample in 'unity_ProbesOcclusion'
|
|
// If we have not baked the light, the occlusion channel is -1.
|
|
// In case there is no occlusion channel is -1, we set it to zero, and then set the second value in the
|
|
// input to one. We then, in the shader max with the second value for non-occluded lights.
|
|
lightOcclusionProbeChannel.x = occlusionProbeChannel == -1 ? 0f : occlusionProbeChannel;
|
|
lightOcclusionProbeChannel.y = occlusionProbeChannel == -1 ? 1f : 0f;
|
|
|
|
// TODO: Add support to shadow mask
|
|
if (light != null && light.bakingOutput.mixedLightingMode == MixedLightingMode.Subtractive && light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed)
|
|
{
|
|
if (m_MixedLightingSetup == MixedLightingSetup.None && lightData.light.shadows != LightShadows.None)
|
|
{
|
|
m_MixedLightingSetup = MixedLightingSetup.Subtractive;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SetupShaderLightConstants(CommandBuffer cmd, ref RenderingData renderingData)
|
|
{
|
|
m_MixedLightingSetup = MixedLightingSetup.None;
|
|
|
|
// Main light has an optimized shader path for main light. This will benefit games that only care about a single light.
|
|
// Universal pipeline also supports only a single shadow light, if available it will be the main light.
|
|
SetupMainLightConstants(cmd, ref renderingData.lightData);
|
|
SetupAdditionalLightConstants(cmd, ref renderingData);
|
|
}
|
|
|
|
void SetupMainLightConstants(CommandBuffer cmd, ref LightData lightData)
|
|
{
|
|
Vector4 lightPos, lightColor, lightAttenuation, lightSpotDir, lightOcclusionChannel;
|
|
InitializeLightConstants(lightData.visibleLights, lightData.mainLightIndex, out lightPos, out lightColor, out lightAttenuation, out lightSpotDir, out lightOcclusionChannel);
|
|
|
|
cmd.SetGlobalVector(LightConstantBuffer._MainLightPosition, lightPos);
|
|
cmd.SetGlobalVector(LightConstantBuffer._MainLightColor, lightColor);
|
|
}
|
|
|
|
void SetupAdditionalLightConstants(CommandBuffer cmd, ref RenderingData renderingData)
|
|
{
|
|
ref LightData lightData = ref renderingData.lightData;
|
|
var cullResults = renderingData.cullResults;
|
|
var lights = lightData.visibleLights;
|
|
int maxAdditionalLightsCount = UniversalRenderPipeline.maxVisibleAdditionalLights;
|
|
int additionalLightsCount = SetupPerObjectLightIndices(cullResults, ref lightData);
|
|
if (additionalLightsCount > 0)
|
|
{
|
|
if (m_UseStructuredBuffer)
|
|
{
|
|
NativeArray<ShaderInput.LightData> additionalLightsData = new NativeArray<ShaderInput.LightData>(additionalLightsCount, Allocator.Temp);
|
|
for (int i = 0, lightIter = 0; i < lights.Length && lightIter < maxAdditionalLightsCount; ++i)
|
|
{
|
|
VisibleLight light = lights[i];
|
|
if (lightData.mainLightIndex != i && light.lightType != LightType.Directional)
|
|
{
|
|
ShaderInput.LightData data;
|
|
InitializeLightConstants(lights, i,
|
|
out data.position, out data.color, out data.attenuation,
|
|
out data.spotDirection, out data.occlusionProbeChannels);
|
|
additionalLightsData[lightIter] = data;
|
|
lightIter++;
|
|
}
|
|
}
|
|
|
|
var lightDataBuffer = ShaderData.instance.GetLightDataBuffer(additionalLightsCount);
|
|
lightDataBuffer.SetData(additionalLightsData);
|
|
|
|
int lightIndices = cullResults.lightAndReflectionProbeIndexCount;
|
|
var lightIndicesBuffer = ShaderData.instance.GetLightIndicesBuffer(lightIndices);
|
|
|
|
cmd.SetGlobalBuffer(m_AdditionalLightsBufferId, lightDataBuffer);
|
|
cmd.SetGlobalBuffer(m_AdditionalLightsIndicesId, lightIndicesBuffer);
|
|
|
|
additionalLightsData.Dispose();
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0, lightIter = 0; i < lights.Length && lightIter < maxAdditionalLightsCount; ++i)
|
|
{
|
|
VisibleLight light = lights[i];
|
|
if (lightData.mainLightIndex != i && light.lightType != LightType.Directional)
|
|
{
|
|
InitializeLightConstants(lights, i, out m_AdditionalLightPositions[lightIter],
|
|
out m_AdditionalLightColors[lightIter],
|
|
out m_AdditionalLightAttenuations[lightIter],
|
|
out m_AdditionalLightSpotDirections[lightIter],
|
|
out m_AdditionalLightOcclusionProbeChannels[lightIter]);
|
|
lightIter++;
|
|
}
|
|
}
|
|
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsPosition, m_AdditionalLightPositions);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsColor, m_AdditionalLightColors);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsAttenuation, m_AdditionalLightAttenuations);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsSpotDir, m_AdditionalLightSpotDirections);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightOcclusionProbeChannel, m_AdditionalLightOcclusionProbeChannels);
|
|
}
|
|
|
|
cmd.SetGlobalVector(LightConstantBuffer._AdditionalLightsCount, new Vector4(lightData.maxPerObjectAdditionalLightsCount,
|
|
0.0f, 0.0f, 0.0f));
|
|
}
|
|
else
|
|
{
|
|
cmd.SetGlobalVector(LightConstantBuffer._AdditionalLightsCount, Vector4.zero);
|
|
}
|
|
}
|
|
|
|
int SetupPerObjectLightIndices(CullingResults cullResults, ref LightData lightData)
|
|
{
|
|
if (lightData.additionalLightsCount == 0)
|
|
return lightData.additionalLightsCount;
|
|
|
|
var visibleLights = lightData.visibleLights;
|
|
var perObjectLightIndexMap = cullResults.GetLightIndexMap(Allocator.Temp);
|
|
int directionalLightsCount = 0;
|
|
int additionalLightsCount = 0;
|
|
|
|
// Disable all directional lights from the perobject light indices
|
|
// Pipeline handles main light globally and there's no support for additional directional lights atm.
|
|
for (int i = 0; i < visibleLights.Length; ++i)
|
|
{
|
|
if (additionalLightsCount >= UniversalRenderPipeline.maxVisibleAdditionalLights)
|
|
break;
|
|
|
|
VisibleLight light = visibleLights[i];
|
|
if (light.lightType == LightType.Directional)
|
|
{
|
|
perObjectLightIndexMap[i] = -1;
|
|
++directionalLightsCount;
|
|
}
|
|
else
|
|
{
|
|
perObjectLightIndexMap[i] -= directionalLightsCount;
|
|
++additionalLightsCount;
|
|
}
|
|
}
|
|
|
|
// Disable all remaining lights we cannot fit into the global light buffer.
|
|
for (int i = directionalLightsCount + additionalLightsCount; i < perObjectLightIndexMap.Length; ++i)
|
|
perObjectLightIndexMap[i] = -1;
|
|
|
|
cullResults.SetLightIndexMap(perObjectLightIndexMap);
|
|
|
|
if (m_UseStructuredBuffer && additionalLightsCount > 0)
|
|
{
|
|
int lightAndReflectionProbeIndices = cullResults.lightAndReflectionProbeIndexCount;
|
|
Assertions.Assert.IsTrue(lightAndReflectionProbeIndices > 0, "Pipelines configures additional lights but per-object light and probe indices count is zero.");
|
|
cullResults.FillLightAndReflectionProbeIndices(ShaderData.instance.GetLightIndicesBuffer(lightAndReflectionProbeIndices));
|
|
}
|
|
|
|
perObjectLightIndexMap.Dispose();
|
|
return additionalLightsCount;
|
|
}
|
|
}
|
|
}
|