Boat Attack使用了Universal RP的许多新图形功能,可以用于探索 Universal RP 的使用方式和技巧。
您最多选择25个主题 主题必须以中文或者字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 

200 行
7.8 KiB

using System.Collections.Generic;
using UnityEngine;
using Unity.Jobs;
using Unity.Burst;
using Unity.Mathematics;
using Unity.Collections;
using UnityEngine.Rendering.Universal;
using WaterSystem.Data;
namespace WaterSystem
{
/// <summary>
/// C# Jobs system version of the Gerstner waves implimentation
/// </summary>
public static class GerstnerWavesJobs
{
//General variables
public static bool Initialized;
private static bool _firstFrame = true;
private static bool _processing;
private static int _waveCount;
private static NativeArray<Wave> _waveData; // Wave data from the water system
//Details for Buoyant Objects
private static NativeArray<float3> _positions;
private static int _positionCount;
private static NativeArray<float3> _wavePos;
private static NativeArray<float3> _waveNormal;
private static JobHandle _waterHeightHandle;
static readonly Dictionary<int, int2> Registry = new Dictionary<int, int2>();
public static void Init()
{
if(UniversalRenderPipeline.asset.debugLevel != PipelineDebugLevel.Disabled)
Debug.Log("Initializing Gerstner Waves Jobs");
//Wave data
_waveCount = Water.Instance._waves.Length;
_waveData = new NativeArray<Wave>(_waveCount, Allocator.Persistent);
for (var i = 0; i < _waveData.Length; i++)
{
_waveData[i] = Water.Instance._waves[i];
}
_positions = new NativeArray<float3>(4096, Allocator.Persistent);
_wavePos = new NativeArray<float3>(4096, Allocator.Persistent);
_waveNormal = new NativeArray<float3>(4096, Allocator.Persistent);
Initialized = true;
}
public static void Cleanup()
{
if(UniversalRenderPipeline.asset.debugLevel != PipelineDebugLevel.Disabled)
Debug.Log("Cleaning up Gerstner Wave Jobs");
_waterHeightHandle.Complete();
//Cleanup native arrays
_waveData.Dispose();
_positions.Dispose();
_wavePos.Dispose();
_waveNormal.Dispose();
}
public static void UpdateSamplePoints(ref NativeArray<float3> samplePoints, int guid)
{
CompleteJobs();
if (Registry.TryGetValue(guid, out var offsets))
{
for (var i = offsets.x; i < offsets.y; i++) _positions[i] = samplePoints[i - offsets.x];
}
else
{
if (_positionCount + samplePoints.Length >= _positions.Length) return;
offsets = new int2(_positionCount, _positionCount + samplePoints.Length);
Registry.Add(guid, offsets);
_positionCount += samplePoints.Length;
}
}
public static void GetData(int guid, ref float3[] outPos, ref float3[] outNorm)
{
if (!Registry.TryGetValue(guid, out var offsets)) return;
_wavePos.Slice(offsets.x, offsets.y - offsets.x).CopyTo(outPos);
if(outNorm != null)
_waveNormal.Slice(offsets.x, offsets.y - offsets.x).CopyTo(outNorm);
}
// Height jobs for the next frame
public static void UpdateHeights()
{
if (_processing) return;
_processing = true;
// Buoyant Object Job
var waterHeight = new HeightJob()
{
WaveData = _waveData,
Position = _positions,
OffsetLength = new int2(0, _positions.Length),
Time = Time.time,
OutPosition = _wavePos,
OutNormal = _waveNormal
};
_waterHeightHandle = waterHeight.Schedule(_positionCount, 32);
JobHandle.ScheduleBatchedJobs();
_firstFrame = false;
}
private static void CompleteJobs()
{
if (_firstFrame || !_processing) return;
_waterHeightHandle.Complete();
_processing = false;
}
// Gerstner Height C# Job
[BurstCompile]
private struct HeightJob : IJobParallelFor
{
[ReadOnly]
public NativeArray<Wave> WaveData; // wave data stroed in vec4's like the shader version but packed into one
[ReadOnly]
public NativeArray<float3> Position;
[WriteOnly]
public NativeArray<float3> OutPosition;
[WriteOnly]
public NativeArray<float3> OutNormal;
[ReadOnly]
public float Time;
[ReadOnly]
public int2 OffsetLength;
// The code actually running on the job
public void Execute(int i)
{
if (i < OffsetLength.x || i >= OffsetLength.y - OffsetLength.x) return;
var waveCountMulti = 1f / WaveData.Length;
var wavePos = new float3(0f, 0f, 0f);
var waveNorm = new float3(0f, 0f, 0f);
for (var wave = 0; wave < WaveData.Length; wave++) // for each wave
{
// Wave data vars
var pos = Position[i].xz;
var amplitude = WaveData[wave].amplitude;
var direction = WaveData[wave].direction;
var wavelength = WaveData[wave].wavelength;
var omniPos = WaveData[wave].origin;
////////////////////////////////wave value calculations//////////////////////////
var w = 6.28318f / wavelength; // 2pi over wavelength(hardcoded)
var wSpeed = math.sqrt(9.8f * w); // frequency of the wave based off wavelength
const float peak = 0.8f; // peak value, 1 is the sharpest peaks
var qi = peak / (amplitude * w * WaveData.Length);
var windDir = new float2(0f, 0f);
direction = math.radians(direction); // convert the incoming degrees to radians
var windDirInput = new float2(math.sin(direction), math.cos(direction)) * (1 - WaveData[wave].onmiDir); // calculate wind direction - TODO - currently radians
var windOmniInput = (pos - omniPos) * WaveData[wave].onmiDir;
windDir += windDirInput;
windDir += windOmniInput;
windDir = math.normalize(windDir);
var dir = math.dot(windDir, pos - (omniPos * WaveData[wave].onmiDir));
////////////////////////////position output calculations/////////////////////////
var calc = dir * w + -Time * wSpeed; // the wave calculation
var cosCalc = math.cos(calc); // cosine version(used for horizontal undulation)
var sinCalc = math.sin(calc); // sin version(used for vertical undulation)
// calculate the offsets for the current point
wavePos.x += qi * amplitude * windDir.x * cosCalc;
wavePos.z += qi * amplitude * windDir.y * cosCalc;
wavePos.y += sinCalc * amplitude * waveCountMulti; // the height is divided by the number of waves
////////////////////////////normal output calculations/////////////////////////
var wa = w * amplitude;
// normal vector
var norm = new float3(-(windDir.xy * wa * cosCalc),
1 - (qi * wa * sinCalc));
waveNorm += (norm * waveCountMulti) * amplitude;
}
OutPosition[i] = wavePos;
OutNormal[i] = math.normalize(waveNorm.xzy);
}
}
}
}